外部改型对乘用车减阻效果的数值模拟研究

Mostofa Sadat, Nayef Albab, Faria Chowdhury, Mohammad Muhshin Aziz Khan
{"title":"外部改型对乘用车减阻效果的数值模拟研究","authors":"Mostofa Sadat, Nayef Albab, Faria Chowdhury, Mohammad Muhshin Aziz Khan","doi":"10.15282/ijame.19.1.2022.19.0738","DOIUrl":null,"url":null,"abstract":"This study used a numerical simulation approach to examine the effects of external modifications in reducing aerodynamic drag on passenger vehicles. During the simulation, modifications included reducing mirror size by replacing the side mirrors with cameras and covering the wheel area. The resulting changes in drag force for different combinations of modifications were compared with a conventional baseline model to determine the most aerodynamic configuration. The study found that side view cameras reduced drag forces by almost 2.6% due to their smaller frontal areas and improvement in the overall aerodynamics of the vehicle. Besides, an increase in wheel coverage decreased the drag causing up to 2.7% of drag force reduction for a wheel with an 87% coverage area. This is because of the reduction in wake formation caused by the wheel rims. Finally, using a combination of smaller cameras and wheels with larger coverage areas resulted in a maximum drag reduction of about 4.3%.","PeriodicalId":13935,"journal":{"name":"International Journal of Automotive and Mechanical Engineering","volume":"76 1","pages":""},"PeriodicalIF":1.0000,"publicationDate":"2022-03-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Numerical Simulation Approach to Investigate the Effects of External Modifications in Reducing Aerodynamic Drag on Passenger Vehicles\",\"authors\":\"Mostofa Sadat, Nayef Albab, Faria Chowdhury, Mohammad Muhshin Aziz Khan\",\"doi\":\"10.15282/ijame.19.1.2022.19.0738\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This study used a numerical simulation approach to examine the effects of external modifications in reducing aerodynamic drag on passenger vehicles. During the simulation, modifications included reducing mirror size by replacing the side mirrors with cameras and covering the wheel area. The resulting changes in drag force for different combinations of modifications were compared with a conventional baseline model to determine the most aerodynamic configuration. The study found that side view cameras reduced drag forces by almost 2.6% due to their smaller frontal areas and improvement in the overall aerodynamics of the vehicle. Besides, an increase in wheel coverage decreased the drag causing up to 2.7% of drag force reduction for a wheel with an 87% coverage area. This is because of the reduction in wake formation caused by the wheel rims. Finally, using a combination of smaller cameras and wheels with larger coverage areas resulted in a maximum drag reduction of about 4.3%.\",\"PeriodicalId\":13935,\"journal\":{\"name\":\"International Journal of Automotive and Mechanical Engineering\",\"volume\":\"76 1\",\"pages\":\"\"},\"PeriodicalIF\":1.0000,\"publicationDate\":\"2022-03-28\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"International Journal of Automotive and Mechanical Engineering\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.15282/ijame.19.1.2022.19.0738\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"ENGINEERING, MECHANICAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Automotive and Mechanical Engineering","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.15282/ijame.19.1.2022.19.0738","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"ENGINEERING, MECHANICAL","Score":null,"Total":0}
引用次数: 1

摘要

本文采用数值模拟的方法,考察了外部改型对减小乘用车气动阻力的影响。在模拟过程中,修改包括通过用摄像头替换侧后视镜和覆盖车轮区域来缩小后视镜的尺寸。不同改装组合的阻力变化与传统的基线模型进行了比较,以确定最符合空气动力学的配置。研究发现,侧视摄像头减少了近2.6%的阻力,因为它们的前部面积更小,并且改善了车辆的整体空气动力学。此外,车轮覆盖面积的增加减少了阻力,导致87%覆盖面积的车轮阻力减少了2.7%。这是因为减少尾迹形成引起的轮辋。最后,采用更小的摄像头和更大覆盖范围的车轮组合,最大减少了约4.3%的阻力。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Numerical Simulation Approach to Investigate the Effects of External Modifications in Reducing Aerodynamic Drag on Passenger Vehicles
This study used a numerical simulation approach to examine the effects of external modifications in reducing aerodynamic drag on passenger vehicles. During the simulation, modifications included reducing mirror size by replacing the side mirrors with cameras and covering the wheel area. The resulting changes in drag force for different combinations of modifications were compared with a conventional baseline model to determine the most aerodynamic configuration. The study found that side view cameras reduced drag forces by almost 2.6% due to their smaller frontal areas and improvement in the overall aerodynamics of the vehicle. Besides, an increase in wheel coverage decreased the drag causing up to 2.7% of drag force reduction for a wheel with an 87% coverage area. This is because of the reduction in wake formation caused by the wheel rims. Finally, using a combination of smaller cameras and wheels with larger coverage areas resulted in a maximum drag reduction of about 4.3%.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
2.40
自引率
10.00%
发文量
43
审稿时长
20 weeks
期刊介绍: The IJAME provides the forum for high-quality research communications and addresses all aspects of original experimental information based on theory and their applications. This journal welcomes all contributions from those who wish to report on new developments in automotive and mechanical engineering fields within the following scopes. -Engine/Emission Technology Automobile Body and Safety- Vehicle Dynamics- Automotive Electronics- Alternative Energy- Energy Conversion- Fuels and Lubricants - Combustion and Reacting Flows- New and Renewable Energy Technologies- Automotive Electrical Systems- Automotive Materials- Automotive Transmission- Automotive Pollution and Control- Vehicle Maintenance- Intelligent Vehicle/Transportation Systems- Fuel Cell, Hybrid, Electrical Vehicle and Other Fields of Automotive Engineering- Engineering Management /TQM- Heat and Mass Transfer- Fluid and Thermal Engineering- CAE/FEA/CAD/CFD- Engineering Mechanics- Modeling and Simulation- Metallurgy/ Materials Engineering- Applied Mechanics- Thermodynamics- Agricultural Machinery and Equipment- Mechatronics- Automatic Control- Multidisciplinary design and optimization - Fluid Mechanics and Dynamics- Thermal-Fluids Machinery- Experimental and Computational Mechanics - Measurement and Instrumentation- HVAC- Manufacturing Systems- Materials Processing- Noise and Vibration- Composite and Polymer Materials- Biomechanical Engineering- Fatigue and Fracture Mechanics- Machine Components design- Gas Turbine- Power Plant Engineering- Artificial Intelligent/Neural Network- Robotic Systems- Solar Energy- Powder Metallurgy and Metal Ceramics- Discrete Systems- Non-linear Analysis- Structural Analysis- Tribology- Engineering Materials- Mechanical Systems and Technology- Pneumatic and Hydraulic Systems - Failure Analysis- Any other related topics.
期刊最新文献
Motion Sickness Susceptibility Among Malaysians When Travelling in a Moving Vehicle The Effect of Motorcycle Helmet Type on Head Response in Oblique Impact Effect of Bilayer Nano-Micro Hydroxyapatite on the Surface Characteristics of Implanted Ti-6Al-4V ELI A Prediction of Graphene Nanoplatelets Addition Effects on Diesel Engine Emissions The Effect of Landing Gear Dimension Variation on the Static Strength and Dynamic Response of Unmanned Aerial Vehicle (UAV)
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1