J.-W. Wang, D. He, X. Wu, X. Guo, Z. Tan, Z. Zhou, W. Shao
{"title":"电极感应熔化惰性气体雾化增材制造制备的预合金NiTi粉末的表征","authors":"J.-W. Wang, D. He, X. Wu, X. Guo, Z. Tan, Z. Zhou, W. Shao","doi":"10.2298/jmmb211019006w","DOIUrl":null,"url":null,"abstract":"In this research, the characteristics of Nickel-titanium (NiTi) powders produced by electrode induction melting inert gas atomization (EIGA) technique for additive manufacturing (AM) technology are investigated using various powder characterization technologies. The results show that the particle size distribution (PSD) of pre-alloyed NiTi powders prepared by EIGA has the range of 10 ?m to 180 ?m. The mean particle size distribution (D50) of the powder is 75 ?m. The oxygen increase of the powder is only 0.005% compared to the raw rod. According to the requirements of the characteristics of the metal powder material used for AM, the powders are sieved into three categories, P1 (15-63 ?m), P2 (63-150 ?m), and P3 (>150 ?m), respectively. The flow rates of P1, and P2 are 19.3 and 17.5 s?(50 g)-1, respectively. The surface, cross- sectional microstructure, phase structure and martensitic transformation temperature of the pre-alloyed NiTi powders with different particle sizes are investigated. The results show that powders of different particle sizes are primarily spherical or nearly spherical. The grain size of powders reduces with the decreasing of particle size. Both the bar stock and the powders of P1, P2, and P3 mainly exhibit the B2 phase. Comparing the powders P1, P2 and P3, the transformation temperature reduces with the decrease of particle size. A high density (99.55%) pre-alloyed NiTi specimen is successfully produced by selective laser melting (SLM) technology using P1 powders. The results indicate that the pre-alloyed NiTi alloy powder is appropriate for AM, which also has a good reference value for researchers producing AM powders.","PeriodicalId":51090,"journal":{"name":"Journal of Mining and Metallurgy Section B-Metallurgy","volume":"5 1","pages":""},"PeriodicalIF":0.9000,"publicationDate":"2022-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Characterization of pre-alloyed NiTi powders produced by electrode induction-melting inert gas atomization for additive manufacturing\",\"authors\":\"J.-W. Wang, D. He, X. Wu, X. Guo, Z. Tan, Z. Zhou, W. Shao\",\"doi\":\"10.2298/jmmb211019006w\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In this research, the characteristics of Nickel-titanium (NiTi) powders produced by electrode induction melting inert gas atomization (EIGA) technique for additive manufacturing (AM) technology are investigated using various powder characterization technologies. The results show that the particle size distribution (PSD) of pre-alloyed NiTi powders prepared by EIGA has the range of 10 ?m to 180 ?m. The mean particle size distribution (D50) of the powder is 75 ?m. The oxygen increase of the powder is only 0.005% compared to the raw rod. According to the requirements of the characteristics of the metal powder material used for AM, the powders are sieved into three categories, P1 (15-63 ?m), P2 (63-150 ?m), and P3 (>150 ?m), respectively. The flow rates of P1, and P2 are 19.3 and 17.5 s?(50 g)-1, respectively. The surface, cross- sectional microstructure, phase structure and martensitic transformation temperature of the pre-alloyed NiTi powders with different particle sizes are investigated. The results show that powders of different particle sizes are primarily spherical or nearly spherical. The grain size of powders reduces with the decreasing of particle size. Both the bar stock and the powders of P1, P2, and P3 mainly exhibit the B2 phase. Comparing the powders P1, P2 and P3, the transformation temperature reduces with the decrease of particle size. A high density (99.55%) pre-alloyed NiTi specimen is successfully produced by selective laser melting (SLM) technology using P1 powders. The results indicate that the pre-alloyed NiTi alloy powder is appropriate for AM, which also has a good reference value for researchers producing AM powders.\",\"PeriodicalId\":51090,\"journal\":{\"name\":\"Journal of Mining and Metallurgy Section B-Metallurgy\",\"volume\":\"5 1\",\"pages\":\"\"},\"PeriodicalIF\":0.9000,\"publicationDate\":\"2022-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Mining and Metallurgy Section B-Metallurgy\",\"FirstCategoryId\":\"88\",\"ListUrlMain\":\"https://doi.org/10.2298/jmmb211019006w\",\"RegionNum\":4,\"RegionCategory\":\"材料科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"METALLURGY & METALLURGICAL ENGINEERING\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Mining and Metallurgy Section B-Metallurgy","FirstCategoryId":"88","ListUrlMain":"https://doi.org/10.2298/jmmb211019006w","RegionNum":4,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"METALLURGY & METALLURGICAL ENGINEERING","Score":null,"Total":0}
Characterization of pre-alloyed NiTi powders produced by electrode induction-melting inert gas atomization for additive manufacturing
In this research, the characteristics of Nickel-titanium (NiTi) powders produced by electrode induction melting inert gas atomization (EIGA) technique for additive manufacturing (AM) technology are investigated using various powder characterization technologies. The results show that the particle size distribution (PSD) of pre-alloyed NiTi powders prepared by EIGA has the range of 10 ?m to 180 ?m. The mean particle size distribution (D50) of the powder is 75 ?m. The oxygen increase of the powder is only 0.005% compared to the raw rod. According to the requirements of the characteristics of the metal powder material used for AM, the powders are sieved into three categories, P1 (15-63 ?m), P2 (63-150 ?m), and P3 (>150 ?m), respectively. The flow rates of P1, and P2 are 19.3 and 17.5 s?(50 g)-1, respectively. The surface, cross- sectional microstructure, phase structure and martensitic transformation temperature of the pre-alloyed NiTi powders with different particle sizes are investigated. The results show that powders of different particle sizes are primarily spherical or nearly spherical. The grain size of powders reduces with the decreasing of particle size. Both the bar stock and the powders of P1, P2, and P3 mainly exhibit the B2 phase. Comparing the powders P1, P2 and P3, the transformation temperature reduces with the decrease of particle size. A high density (99.55%) pre-alloyed NiTi specimen is successfully produced by selective laser melting (SLM) technology using P1 powders. The results indicate that the pre-alloyed NiTi alloy powder is appropriate for AM, which also has a good reference value for researchers producing AM powders.
期刊介绍:
University of Belgrade, Technical Faculty in Bor, has been publishing the journal called Journal of Mining and Metallurgy since 1965 and in 1997 it was divided in two independent journals dealing with mining and metallurgy separately. Since 2009 Journal of Mining and Metallurgy, Section B: Metallurgy has been accepted in Science Citation Index Expanded.
Journal of Mining and Metallurgy, Section B: Metallurgy presents an international medium for the publication of contributions on original research which reflect the new progresses in theory and practice of metallurgy. The Journal covers the latest research in all aspects of metallurgy including hydrometallurgy, pyrometallurgy, electrometallurgy, transport phenomena, process control, solidification, mechanical working, solid state reactions, materials processing, surface treatment and relationships among processing, structure, and properties of materials.