蜡致动器的经验模型开发和应用于地板采暖控制与不同复杂性的控制器建模细节

IF 2.2 4区 工程技术 Q2 CONSTRUCTION & BUILDING TECHNOLOGY Journal of Building Performance Simulation Pub Date : 2023-04-21 DOI:10.1080/19401493.2023.2201818
Tuule-Mall Parts, A. Ferrantelli, H. Naar, M. Thalfeldt, J. Kurnitski
{"title":"蜡致动器的经验模型开发和应用于地板采暖控制与不同复杂性的控制器建模细节","authors":"Tuule-Mall Parts, A. Ferrantelli, H. Naar, M. Thalfeldt, J. Kurnitski","doi":"10.1080/19401493.2023.2201818","DOIUrl":null,"url":null,"abstract":"This paper investigates how a simulated room’s energy and temperature performance are affected if its underfloor heating control is modelled with increasing detail. Experiments were performed to develop and calibrate an empirical model of wax motor and to calibrate the valve curve. These models were used to implement and test the On/Off and proportional-integral (PI) control processes at various levels of modelling detail. Controllers were implemented by gradually adding optimized control parameters, signal delay, calibrated valve curve, signal modulation, and actuator modelling. The On/Off control dead band and PI parameters exhibited the largest impact, reducing energy use (1%–5%) and temperature fluctuations (ca 1 K). Modulating the PI output signal increased temperature fluctuations to the same amplitude as On/Off with 0.5 K dead band, increasing space heating demand by 1.3%. The wax actuator counted for less than 1%; however, it increased time delays to maximally 7 min and remarkably changed the mass flows.","PeriodicalId":49168,"journal":{"name":"Journal of Building Performance Simulation","volume":"02 1","pages":"772 - 796"},"PeriodicalIF":2.2000,"publicationDate":"2023-04-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Wax actuator’s empirical model development and application to underfloor heating control with varying complexity of controller modelling detail\",\"authors\":\"Tuule-Mall Parts, A. Ferrantelli, H. Naar, M. Thalfeldt, J. Kurnitski\",\"doi\":\"10.1080/19401493.2023.2201818\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This paper investigates how a simulated room’s energy and temperature performance are affected if its underfloor heating control is modelled with increasing detail. Experiments were performed to develop and calibrate an empirical model of wax motor and to calibrate the valve curve. These models were used to implement and test the On/Off and proportional-integral (PI) control processes at various levels of modelling detail. Controllers were implemented by gradually adding optimized control parameters, signal delay, calibrated valve curve, signal modulation, and actuator modelling. The On/Off control dead band and PI parameters exhibited the largest impact, reducing energy use (1%–5%) and temperature fluctuations (ca 1 K). Modulating the PI output signal increased temperature fluctuations to the same amplitude as On/Off with 0.5 K dead band, increasing space heating demand by 1.3%. The wax actuator counted for less than 1%; however, it increased time delays to maximally 7 min and remarkably changed the mass flows.\",\"PeriodicalId\":49168,\"journal\":{\"name\":\"Journal of Building Performance Simulation\",\"volume\":\"02 1\",\"pages\":\"772 - 796\"},\"PeriodicalIF\":2.2000,\"publicationDate\":\"2023-04-21\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Building Performance Simulation\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://doi.org/10.1080/19401493.2023.2201818\",\"RegionNum\":4,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"CONSTRUCTION & BUILDING TECHNOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Building Performance Simulation","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1080/19401493.2023.2201818","RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"CONSTRUCTION & BUILDING TECHNOLOGY","Score":null,"Total":0}
引用次数: 0

摘要

本文研究了地板采暖控制对模拟房间能量和温度性能的影响。通过实验建立和标定了蜡马达的经验模型,并标定了阀形曲线。这些模型用于实现和测试各种建模细节级别的开/关和比例积分(PI)控制过程。控制器通过逐步添加优化控制参数、信号延迟、校准阀门曲线、信号调制和执行器建模来实现。On/Off控制死区和PI参数的影响最大,降低了能耗(1%-5%)和温度波动(约1 K)。调制PI输出信号将温度波动增加到与开/关相同的幅度,死区为0.5 K,增加了1.3%的空间加热需求。蜡致动器计数小于1%;然而,它将时间延迟增加到最大7分钟,并显著改变了质量流。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Wax actuator’s empirical model development and application to underfloor heating control with varying complexity of controller modelling detail
This paper investigates how a simulated room’s energy and temperature performance are affected if its underfloor heating control is modelled with increasing detail. Experiments were performed to develop and calibrate an empirical model of wax motor and to calibrate the valve curve. These models were used to implement and test the On/Off and proportional-integral (PI) control processes at various levels of modelling detail. Controllers were implemented by gradually adding optimized control parameters, signal delay, calibrated valve curve, signal modulation, and actuator modelling. The On/Off control dead band and PI parameters exhibited the largest impact, reducing energy use (1%–5%) and temperature fluctuations (ca 1 K). Modulating the PI output signal increased temperature fluctuations to the same amplitude as On/Off with 0.5 K dead band, increasing space heating demand by 1.3%. The wax actuator counted for less than 1%; however, it increased time delays to maximally 7 min and remarkably changed the mass flows.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Journal of Building Performance Simulation
Journal of Building Performance Simulation CONSTRUCTION & BUILDING TECHNOLOGY-
CiteScore
5.50
自引率
12.00%
发文量
55
审稿时长
12 months
期刊介绍: The Journal of Building Performance Simulation (JBPS) aims to make a substantial and lasting contribution to the international building community by supporting our authors and the high-quality, original research they submit. The journal also offers a forum for original review papers and researched case studies We welcome building performance simulation contributions that explore the following topics related to buildings and communities: -Theoretical aspects related to modelling and simulating the physical processes (thermal, air flow, moisture, lighting, acoustics). -Theoretical aspects related to modelling and simulating conventional and innovative energy conversion, storage, distribution, and control systems. -Theoretical aspects related to occupants, weather data, and other boundary conditions. -Methods and algorithms for optimizing the performance of buildings and communities and the systems which service them, including interaction with the electrical grid. -Uncertainty, sensitivity analysis, and calibration. -Methods and algorithms for validating models and for verifying solution methods and tools. -Development and validation of controls-oriented models that are appropriate for model predictive control and/or automated fault detection and diagnostics. -Techniques for educating and training tool users. -Software development techniques and interoperability issues with direct applicability to building performance simulation. -Case studies involving the application of building performance simulation for any stage of the design, construction, commissioning, operation, or management of buildings and the systems which service them are welcomed if they include validation or aspects that make a novel contribution to the knowledge base.
期刊最新文献
Comparing overheating risk and mitigation strategies for two Canadian schools by using building simulation calibrated with measured data Using Fourier series to obtain cross periodic wall response factors Limitations and issues of conventional artificial neural network-based surrogate models for building energy retrofit An empirical review of methods to assess overheating in buildings in the context of changes to extreme heat events Coupling BIM and detailed modelica simulations of HVAC systems in a common data environment
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1