{"title":"具有共同故障和独立故障的n版容错软件可靠性增长模型","authors":"Sudeep Kumar, A. Aggarwal, Ritu Gupta, PK Kapur","doi":"10.1142/s0218539323500262","DOIUrl":null,"url":null,"abstract":"Both the industrial and academic worlds have become increasingly concerned in developing highly reliable software for real-time control systems. To achieve the high reliability software with safety-related standards is the main challenge specially in controlling safety-critical systems, such as aircraft controls, railroad signalization systems and nuclear plant controls, where risk ratio is at the highest level because small errors could lead to hazardous accidents. N-version programming (NVP) is one of the primary techniques used in fault-tolerant software to increase reliability of safety critical applications. NVP technique enables the software to be fault-tolerant, helps to produce accurate results even in the presence of faults. In this paper, we propose a nonhomogeneous Poisson process based (NHPP) software reliability growth model (SRGM) for NVP systems by incorporating the features of both independent and common faults, whereas fault detection rate is supposed to be logistically distributed. A straightforward analytical technique is used for evaluating the reliability of software systems developed using NVP. We offer closed structure analytical expressions for the system reliability and other performance metrics. Furthermore, using appropriate parameters as special instances, the numerical assessment for two illustrative examples 2VP and 3VP is carried out. The numerical simulation is performed with the aid of MATLAB. The analytical results are exhibited and compared by neuro-fuzzy results based on fuzzy interference system.","PeriodicalId":45573,"journal":{"name":"International Journal of Reliability Quality and Safety Engineering","volume":null,"pages":null},"PeriodicalIF":0.9000,"publicationDate":"2023-09-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Software Reliability Growth Model for N-Version Fault Tolerant Software with Common and Independent Faults\",\"authors\":\"Sudeep Kumar, A. Aggarwal, Ritu Gupta, PK Kapur\",\"doi\":\"10.1142/s0218539323500262\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Both the industrial and academic worlds have become increasingly concerned in developing highly reliable software for real-time control systems. To achieve the high reliability software with safety-related standards is the main challenge specially in controlling safety-critical systems, such as aircraft controls, railroad signalization systems and nuclear plant controls, where risk ratio is at the highest level because small errors could lead to hazardous accidents. N-version programming (NVP) is one of the primary techniques used in fault-tolerant software to increase reliability of safety critical applications. NVP technique enables the software to be fault-tolerant, helps to produce accurate results even in the presence of faults. In this paper, we propose a nonhomogeneous Poisson process based (NHPP) software reliability growth model (SRGM) for NVP systems by incorporating the features of both independent and common faults, whereas fault detection rate is supposed to be logistically distributed. A straightforward analytical technique is used for evaluating the reliability of software systems developed using NVP. We offer closed structure analytical expressions for the system reliability and other performance metrics. Furthermore, using appropriate parameters as special instances, the numerical assessment for two illustrative examples 2VP and 3VP is carried out. The numerical simulation is performed with the aid of MATLAB. The analytical results are exhibited and compared by neuro-fuzzy results based on fuzzy interference system.\",\"PeriodicalId\":45573,\"journal\":{\"name\":\"International Journal of Reliability Quality and Safety Engineering\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.9000,\"publicationDate\":\"2023-09-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"International Journal of Reliability Quality and Safety Engineering\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1142/s0218539323500262\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"ENGINEERING, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Reliability Quality and Safety Engineering","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1142/s0218539323500262","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"ENGINEERING, MULTIDISCIPLINARY","Score":null,"Total":0}
Software Reliability Growth Model for N-Version Fault Tolerant Software with Common and Independent Faults
Both the industrial and academic worlds have become increasingly concerned in developing highly reliable software for real-time control systems. To achieve the high reliability software with safety-related standards is the main challenge specially in controlling safety-critical systems, such as aircraft controls, railroad signalization systems and nuclear plant controls, where risk ratio is at the highest level because small errors could lead to hazardous accidents. N-version programming (NVP) is one of the primary techniques used in fault-tolerant software to increase reliability of safety critical applications. NVP technique enables the software to be fault-tolerant, helps to produce accurate results even in the presence of faults. In this paper, we propose a nonhomogeneous Poisson process based (NHPP) software reliability growth model (SRGM) for NVP systems by incorporating the features of both independent and common faults, whereas fault detection rate is supposed to be logistically distributed. A straightforward analytical technique is used for evaluating the reliability of software systems developed using NVP. We offer closed structure analytical expressions for the system reliability and other performance metrics. Furthermore, using appropriate parameters as special instances, the numerical assessment for two illustrative examples 2VP and 3VP is carried out. The numerical simulation is performed with the aid of MATLAB. The analytical results are exhibited and compared by neuro-fuzzy results based on fuzzy interference system.
期刊介绍:
IJRQSE is a refereed journal focusing on both the theoretical and practical aspects of reliability, quality, and safety in engineering. The journal is intended to cover a broad spectrum of issues in manufacturing, computing, software, aerospace, control, nuclear systems, power systems, communication systems, and electronics. Papers are sought in the theoretical domain as well as in such practical fields as industry and laboratory research. The journal is published quarterly, March, June, September and December. It is intended to bridge the gap between the theoretical experts and practitioners in the academic, scientific, government, and business communities.