基于马尔可夫链的文本上下文感知实体消歧

Lei Zhang, Achim Rettinger, Patrick Philipp
{"title":"基于马尔可夫链的文本上下文感知实体消歧","authors":"Lei Zhang, Achim Rettinger, Patrick Philipp","doi":"10.1109/WI.2016.0018","DOIUrl":null,"url":null,"abstract":"In recent years, the amount of entities in large knowledge bases has been increasing rapidly. Such entities can help to bridge unstructured text with structured knowledge and thus be beneficial for many entity-centric applications. The key issue is to link entity mentions in text with entities in knowledge bases, where the main challenge lies in mention ambiguity. Many methods have been proposed to tackle this problem. However, most of the methods assume certain characteristics of the input mentions and documents, e.g., only named entities are considered. In this paper, we propose a context-aware approach to collective entity disambiguation of the input mentions in text with different characteristics in a consistent manner. We extensively evaluate the performance of our approach over 9 datasets and compare it with 14 state-of-the-art methods. Experimental results show that our approach outperforms the existing methods in most cases.","PeriodicalId":6513,"journal":{"name":"2016 IEEE/WIC/ACM International Conference on Web Intelligence (WI)","volume":"19 1","pages":"49-56"},"PeriodicalIF":0.0000,"publicationDate":"2016-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"4","resultStr":"{\"title\":\"Context-Aware Entity Disambiguation in Text Using Markov Chains\",\"authors\":\"Lei Zhang, Achim Rettinger, Patrick Philipp\",\"doi\":\"10.1109/WI.2016.0018\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In recent years, the amount of entities in large knowledge bases has been increasing rapidly. Such entities can help to bridge unstructured text with structured knowledge and thus be beneficial for many entity-centric applications. The key issue is to link entity mentions in text with entities in knowledge bases, where the main challenge lies in mention ambiguity. Many methods have been proposed to tackle this problem. However, most of the methods assume certain characteristics of the input mentions and documents, e.g., only named entities are considered. In this paper, we propose a context-aware approach to collective entity disambiguation of the input mentions in text with different characteristics in a consistent manner. We extensively evaluate the performance of our approach over 9 datasets and compare it with 14 state-of-the-art methods. Experimental results show that our approach outperforms the existing methods in most cases.\",\"PeriodicalId\":6513,\"journal\":{\"name\":\"2016 IEEE/WIC/ACM International Conference on Web Intelligence (WI)\",\"volume\":\"19 1\",\"pages\":\"49-56\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2016-10-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"4\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2016 IEEE/WIC/ACM International Conference on Web Intelligence (WI)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/WI.2016.0018\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2016 IEEE/WIC/ACM International Conference on Web Intelligence (WI)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/WI.2016.0018","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 4

摘要

近年来,大型知识库中的实体数量快速增长。这样的实体可以帮助连接非结构化文本和结构化知识,因此对许多以实体为中心的应用程序是有益的。关键问题是将文本中的实体提及与知识库中的实体联系起来,其中主要的挑战在于提及的模糊性。已经提出了许多方法来解决这个问题。然而,大多数方法假定输入提及和文档的某些特征,例如,只考虑命名实体。在本文中,我们提出了一种上下文感知的方法,以一致的方式对具有不同特征的文本中的输入提及进行集体实体消歧。我们在9个数据集上广泛评估了我们的方法的性能,并将其与14种最先进的方法进行了比较。实验结果表明,在大多数情况下,我们的方法优于现有的方法。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Context-Aware Entity Disambiguation in Text Using Markov Chains
In recent years, the amount of entities in large knowledge bases has been increasing rapidly. Such entities can help to bridge unstructured text with structured knowledge and thus be beneficial for many entity-centric applications. The key issue is to link entity mentions in text with entities in knowledge bases, where the main challenge lies in mention ambiguity. Many methods have been proposed to tackle this problem. However, most of the methods assume certain characteristics of the input mentions and documents, e.g., only named entities are considered. In this paper, we propose a context-aware approach to collective entity disambiguation of the input mentions in text with different characteristics in a consistent manner. We extensively evaluate the performance of our approach over 9 datasets and compare it with 14 state-of-the-art methods. Experimental results show that our approach outperforms the existing methods in most cases.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
The Political Power of Twitter IEEE/WIC/ACM International Conference on Web Intelligence A Distributed Approach to Constructing Travel Solutions by Exploiting Web Resources Joint Model of Topics, Expertises, Activities and Trends for Question Answering Web Applications A Multi-context BDI Recommender System: From Theory to Simulation
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1