{"title":"基于马尔可夫链的文本上下文感知实体消歧","authors":"Lei Zhang, Achim Rettinger, Patrick Philipp","doi":"10.1109/WI.2016.0018","DOIUrl":null,"url":null,"abstract":"In recent years, the amount of entities in large knowledge bases has been increasing rapidly. Such entities can help to bridge unstructured text with structured knowledge and thus be beneficial for many entity-centric applications. The key issue is to link entity mentions in text with entities in knowledge bases, where the main challenge lies in mention ambiguity. Many methods have been proposed to tackle this problem. However, most of the methods assume certain characteristics of the input mentions and documents, e.g., only named entities are considered. In this paper, we propose a context-aware approach to collective entity disambiguation of the input mentions in text with different characteristics in a consistent manner. We extensively evaluate the performance of our approach over 9 datasets and compare it with 14 state-of-the-art methods. Experimental results show that our approach outperforms the existing methods in most cases.","PeriodicalId":6513,"journal":{"name":"2016 IEEE/WIC/ACM International Conference on Web Intelligence (WI)","volume":"19 1","pages":"49-56"},"PeriodicalIF":0.0000,"publicationDate":"2016-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"4","resultStr":"{\"title\":\"Context-Aware Entity Disambiguation in Text Using Markov Chains\",\"authors\":\"Lei Zhang, Achim Rettinger, Patrick Philipp\",\"doi\":\"10.1109/WI.2016.0018\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In recent years, the amount of entities in large knowledge bases has been increasing rapidly. Such entities can help to bridge unstructured text with structured knowledge and thus be beneficial for many entity-centric applications. The key issue is to link entity mentions in text with entities in knowledge bases, where the main challenge lies in mention ambiguity. Many methods have been proposed to tackle this problem. However, most of the methods assume certain characteristics of the input mentions and documents, e.g., only named entities are considered. In this paper, we propose a context-aware approach to collective entity disambiguation of the input mentions in text with different characteristics in a consistent manner. We extensively evaluate the performance of our approach over 9 datasets and compare it with 14 state-of-the-art methods. Experimental results show that our approach outperforms the existing methods in most cases.\",\"PeriodicalId\":6513,\"journal\":{\"name\":\"2016 IEEE/WIC/ACM International Conference on Web Intelligence (WI)\",\"volume\":\"19 1\",\"pages\":\"49-56\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2016-10-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"4\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2016 IEEE/WIC/ACM International Conference on Web Intelligence (WI)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/WI.2016.0018\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2016 IEEE/WIC/ACM International Conference on Web Intelligence (WI)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/WI.2016.0018","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Context-Aware Entity Disambiguation in Text Using Markov Chains
In recent years, the amount of entities in large knowledge bases has been increasing rapidly. Such entities can help to bridge unstructured text with structured knowledge and thus be beneficial for many entity-centric applications. The key issue is to link entity mentions in text with entities in knowledge bases, where the main challenge lies in mention ambiguity. Many methods have been proposed to tackle this problem. However, most of the methods assume certain characteristics of the input mentions and documents, e.g., only named entities are considered. In this paper, we propose a context-aware approach to collective entity disambiguation of the input mentions in text with different characteristics in a consistent manner. We extensively evaluate the performance of our approach over 9 datasets and compare it with 14 state-of-the-art methods. Experimental results show that our approach outperforms the existing methods in most cases.