{"title":"氦大气中20MeV质子粒子诱导x射线发射分析方法的建立","authors":"K. Ishii, A. Terakawa, K. Hitomi, M. Nogami","doi":"10.1142/s0129083519500219","DOIUrl":null,"url":null,"abstract":"We developed a 20[Formula: see text]MeV particle-induced X-ray emission (PIXE) analysis method using a medical cyclotron, which is conventionally used for positron emission tomography analysis performed in vacuo, during which the target sample is damaged. For non-destructive analysis and ease of switching between target samples, we developed a technique allowing 20[Formula: see text]MeV proton PIXE analysis to be performed at the atmospheric pressure. We filled the PIXE analysis chamber with helium and checked that the continuous background of the Compton tails of nuclear reaction [Formula: see text]-rays increased only minimally, and that the quasi-free electron bremsstrahlung (QFEB) did not increase at all, in the X-ray energy spectrum.","PeriodicalId":14345,"journal":{"name":"International Journal of PIXE","volume":"43 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2019-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Development of a 20MeV proton particle-induced X-ray emission analysis method in a helium atmosphere\",\"authors\":\"K. Ishii, A. Terakawa, K. Hitomi, M. Nogami\",\"doi\":\"10.1142/s0129083519500219\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"We developed a 20[Formula: see text]MeV particle-induced X-ray emission (PIXE) analysis method using a medical cyclotron, which is conventionally used for positron emission tomography analysis performed in vacuo, during which the target sample is damaged. For non-destructive analysis and ease of switching between target samples, we developed a technique allowing 20[Formula: see text]MeV proton PIXE analysis to be performed at the atmospheric pressure. We filled the PIXE analysis chamber with helium and checked that the continuous background of the Compton tails of nuclear reaction [Formula: see text]-rays increased only minimally, and that the quasi-free electron bremsstrahlung (QFEB) did not increase at all, in the X-ray energy spectrum.\",\"PeriodicalId\":14345,\"journal\":{\"name\":\"International Journal of PIXE\",\"volume\":\"43 1\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2019-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"International Journal of PIXE\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1142/s0129083519500219\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of PIXE","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1142/s0129083519500219","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Development of a 20MeV proton particle-induced X-ray emission analysis method in a helium atmosphere
We developed a 20[Formula: see text]MeV particle-induced X-ray emission (PIXE) analysis method using a medical cyclotron, which is conventionally used for positron emission tomography analysis performed in vacuo, during which the target sample is damaged. For non-destructive analysis and ease of switching between target samples, we developed a technique allowing 20[Formula: see text]MeV proton PIXE analysis to be performed at the atmospheric pressure. We filled the PIXE analysis chamber with helium and checked that the continuous background of the Compton tails of nuclear reaction [Formula: see text]-rays increased only minimally, and that the quasi-free electron bremsstrahlung (QFEB) did not increase at all, in the X-ray energy spectrum.