{"title":"所选油墨溶剂在顶空和巧克力饼干样品之间的分配行为","authors":"D. An","doi":"10.3746/JFN.2011.16.3.267","DOIUrl":null,"url":null,"abstract":"Static Headspace Gas Chromatographic analysis was used to study the partitioning behavior of five organic printing ink solvents between chocolate cookie/air systems. Three cookie sample formulations varied with respect to chocolate type and overall percentage of constituents. Major considerations involved differences in fat content and type and resulting variability in chemical and physical structure. Each of the solvents studied (ethyl acetate, hexane, isopropanol, methyl ethyl ketone, toluene) represents a general class of printing ink solvents based on predominate functional group. Values of the partitioning coefficient (Kp) were determined at equilibrium using measured quantities of both solvent and cookie sample in closed systems at temperature of 25, 35, and 45˚C. In each of the three cookies at the three test temperatures, toluene always exhibited the greatest value of partitioning to cookie and hexane always exhibited the least. Results also showed that the partitioning behavior of solvents is generally inversely related to temperature and that solvent affinity, though constant for a particular cookie type over all test temperatures, varies significantly among the three cookie types. The preference of each of the five solvents for each cookie sample was also found to vary with temperature. No correlation was found between the extent of partitioning and cookie formulation or physical characteristic of solvent. The Hildebrand parameter, related to ΔHmix (heat of mixing), may be used to describe differences in partitioning based on the overall potential of a solvent/cookie interaction to occur. The potential for interaction is dependent upon the chemical structure of the cookie sample and thus the availability of 'active-sites' required for a given solvent.","PeriodicalId":15791,"journal":{"name":"Journal of Food Science and Nutrition","volume":"17 1","pages":"267-271"},"PeriodicalIF":0.0000,"publicationDate":"2011-09-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Partitioning Behavior of Selected Printing Ink Solvents between Headspace and Chocolate Cookie Samples\",\"authors\":\"D. An\",\"doi\":\"10.3746/JFN.2011.16.3.267\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Static Headspace Gas Chromatographic analysis was used to study the partitioning behavior of five organic printing ink solvents between chocolate cookie/air systems. Three cookie sample formulations varied with respect to chocolate type and overall percentage of constituents. Major considerations involved differences in fat content and type and resulting variability in chemical and physical structure. Each of the solvents studied (ethyl acetate, hexane, isopropanol, methyl ethyl ketone, toluene) represents a general class of printing ink solvents based on predominate functional group. Values of the partitioning coefficient (Kp) were determined at equilibrium using measured quantities of both solvent and cookie sample in closed systems at temperature of 25, 35, and 45˚C. In each of the three cookies at the three test temperatures, toluene always exhibited the greatest value of partitioning to cookie and hexane always exhibited the least. Results also showed that the partitioning behavior of solvents is generally inversely related to temperature and that solvent affinity, though constant for a particular cookie type over all test temperatures, varies significantly among the three cookie types. The preference of each of the five solvents for each cookie sample was also found to vary with temperature. No correlation was found between the extent of partitioning and cookie formulation or physical characteristic of solvent. The Hildebrand parameter, related to ΔHmix (heat of mixing), may be used to describe differences in partitioning based on the overall potential of a solvent/cookie interaction to occur. The potential for interaction is dependent upon the chemical structure of the cookie sample and thus the availability of 'active-sites' required for a given solvent.\",\"PeriodicalId\":15791,\"journal\":{\"name\":\"Journal of Food Science and Nutrition\",\"volume\":\"17 1\",\"pages\":\"267-271\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2011-09-30\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Food Science and Nutrition\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.3746/JFN.2011.16.3.267\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Food Science and Nutrition","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.3746/JFN.2011.16.3.267","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Partitioning Behavior of Selected Printing Ink Solvents between Headspace and Chocolate Cookie Samples
Static Headspace Gas Chromatographic analysis was used to study the partitioning behavior of five organic printing ink solvents between chocolate cookie/air systems. Three cookie sample formulations varied with respect to chocolate type and overall percentage of constituents. Major considerations involved differences in fat content and type and resulting variability in chemical and physical structure. Each of the solvents studied (ethyl acetate, hexane, isopropanol, methyl ethyl ketone, toluene) represents a general class of printing ink solvents based on predominate functional group. Values of the partitioning coefficient (Kp) were determined at equilibrium using measured quantities of both solvent and cookie sample in closed systems at temperature of 25, 35, and 45˚C. In each of the three cookies at the three test temperatures, toluene always exhibited the greatest value of partitioning to cookie and hexane always exhibited the least. Results also showed that the partitioning behavior of solvents is generally inversely related to temperature and that solvent affinity, though constant for a particular cookie type over all test temperatures, varies significantly among the three cookie types. The preference of each of the five solvents for each cookie sample was also found to vary with temperature. No correlation was found between the extent of partitioning and cookie formulation or physical characteristic of solvent. The Hildebrand parameter, related to ΔHmix (heat of mixing), may be used to describe differences in partitioning based on the overall potential of a solvent/cookie interaction to occur. The potential for interaction is dependent upon the chemical structure of the cookie sample and thus the availability of 'active-sites' required for a given solvent.