{"title":"利用基于运动的不确定性传播,在高密度交通中实现自动驾驶车道变更","authors":"","doi":"10.1080/15472450.2022.2137795","DOIUrl":null,"url":null,"abstract":"<div><p>This paper presents a design of lane change decision and control algorithm in highly dense traffic situation for self-driving vehicles using motion-based adaptive uncertainty propagation and Stochastic Model Predictive Control (SMPC). Essential ideas of the proposed algorithm are introduced; i) an optimal motion in a current situation with multiple criteria decision making (MCDM), ii) four steps to change lane successfully in the dense traffic situation which is modeled as a simple acceleration model based on real driving data, iii) motion-based adaptive uncertainty propagation to consider a model error. The proposed algorithm has been evaluated via simulation studies in MATLAB/Simulink and CARSIM. The simulation results show the effectiveness of the proposed algorithm and its performance for changing lane in the highly-dense traffic situation.</p></div>","PeriodicalId":54792,"journal":{"name":"Journal of Intelligent Transportation Systems","volume":"28 4","pages":"Pages 425-442"},"PeriodicalIF":2.8000,"publicationDate":"2024-07-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Lane change for self-driving in highly dense traffic using motion based uncertainty propagation\",\"authors\":\"\",\"doi\":\"10.1080/15472450.2022.2137795\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>This paper presents a design of lane change decision and control algorithm in highly dense traffic situation for self-driving vehicles using motion-based adaptive uncertainty propagation and Stochastic Model Predictive Control (SMPC). Essential ideas of the proposed algorithm are introduced; i) an optimal motion in a current situation with multiple criteria decision making (MCDM), ii) four steps to change lane successfully in the dense traffic situation which is modeled as a simple acceleration model based on real driving data, iii) motion-based adaptive uncertainty propagation to consider a model error. The proposed algorithm has been evaluated via simulation studies in MATLAB/Simulink and CARSIM. The simulation results show the effectiveness of the proposed algorithm and its performance for changing lane in the highly-dense traffic situation.</p></div>\",\"PeriodicalId\":54792,\"journal\":{\"name\":\"Journal of Intelligent Transportation Systems\",\"volume\":\"28 4\",\"pages\":\"Pages 425-442\"},\"PeriodicalIF\":2.8000,\"publicationDate\":\"2024-07-03\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Intelligent Transportation Systems\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://www.sciencedirect.com/org/science/article/pii/S1547245023000269\",\"RegionNum\":3,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"TRANSPORTATION\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Intelligent Transportation Systems","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/org/science/article/pii/S1547245023000269","RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"TRANSPORTATION","Score":null,"Total":0}
Lane change for self-driving in highly dense traffic using motion based uncertainty propagation
This paper presents a design of lane change decision and control algorithm in highly dense traffic situation for self-driving vehicles using motion-based adaptive uncertainty propagation and Stochastic Model Predictive Control (SMPC). Essential ideas of the proposed algorithm are introduced; i) an optimal motion in a current situation with multiple criteria decision making (MCDM), ii) four steps to change lane successfully in the dense traffic situation which is modeled as a simple acceleration model based on real driving data, iii) motion-based adaptive uncertainty propagation to consider a model error. The proposed algorithm has been evaluated via simulation studies in MATLAB/Simulink and CARSIM. The simulation results show the effectiveness of the proposed algorithm and its performance for changing lane in the highly-dense traffic situation.
期刊介绍:
The Journal of Intelligent Transportation Systems is devoted to scholarly research on the development, planning, management, operation and evaluation of intelligent transportation systems. Intelligent transportation systems are innovative solutions that address contemporary transportation problems. They are characterized by information, dynamic feedback and automation that allow people and goods to move efficiently. They encompass the full scope of information technologies used in transportation, including control, computation and communication, as well as the algorithms, databases, models and human interfaces. The emergence of these technologies as a new pathway for transportation is relatively new.
The Journal of Intelligent Transportation Systems is especially interested in research that leads to improved planning and operation of the transportation system through the application of new technologies. The journal is particularly interested in research that adds to the scientific understanding of the impacts that intelligent transportation systems can have on accessibility, congestion, pollution, safety, security, noise, and energy and resource consumption.
The journal is inter-disciplinary, and accepts work from fields of engineering, economics, planning, policy, business and management, as well as any other disciplines that contribute to the scientific understanding of intelligent transportation systems. The journal is also multi-modal, and accepts work on intelligent transportation for all forms of ground, air and water transportation. Example topics include the role of information systems in transportation, traffic flow and control, vehicle control, routing and scheduling, traveler response to dynamic information, planning for ITS innovations, evaluations of ITS field operational tests, ITS deployment experiences, automated highway systems, vehicle control systems, diffusion of ITS, and tools/software for analysis of ITS.