{"title":"一种可视化和计算分析方法,用于探索沿公交路线的重要位置和时间段","authors":"J. Mazimpaka, S. Timpf","doi":"10.1145/2996913.2996936","DOIUrl":null,"url":null,"abstract":"Understanding human mobility is important for planning and delivering various services in urban area. An important element for mobility understanding is to understand the context in which the movement takes place. In this direction, we propose a method for identifying significant locations and time periods along a bus route. The significance is based on special characteristics that locations have during specific time periods as determined from their effect of these locations on the movement of the bus. The method extracts discriminative features from the space, time and other selected attributes and then classifies locations and time periods into 5 significance classes. The classes are then rendered in different views for discovering and understanding patterns. The novelty of the method is an explicit consideration of the time dimension at different granularity levels and a visualization that facilitates comparison across the space and time dimensions while avoiding a visual clutter. We demonstrate the applicability of our approach by applying it on a large set of bus trajectories.","PeriodicalId":20525,"journal":{"name":"Proceedings of the 24th ACM SIGSPATIAL International Conference on Advances in Geographic Information Systems","volume":"17 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2016-10-31","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"A visual and computational analysis approach for exploring significant locations and time periods along a bus route\",\"authors\":\"J. Mazimpaka, S. Timpf\",\"doi\":\"10.1145/2996913.2996936\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Understanding human mobility is important for planning and delivering various services in urban area. An important element for mobility understanding is to understand the context in which the movement takes place. In this direction, we propose a method for identifying significant locations and time periods along a bus route. The significance is based on special characteristics that locations have during specific time periods as determined from their effect of these locations on the movement of the bus. The method extracts discriminative features from the space, time and other selected attributes and then classifies locations and time periods into 5 significance classes. The classes are then rendered in different views for discovering and understanding patterns. The novelty of the method is an explicit consideration of the time dimension at different granularity levels and a visualization that facilitates comparison across the space and time dimensions while avoiding a visual clutter. We demonstrate the applicability of our approach by applying it on a large set of bus trajectories.\",\"PeriodicalId\":20525,\"journal\":{\"name\":\"Proceedings of the 24th ACM SIGSPATIAL International Conference on Advances in Geographic Information Systems\",\"volume\":\"17 1\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2016-10-31\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Proceedings of the 24th ACM SIGSPATIAL International Conference on Advances in Geographic Information Systems\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1145/2996913.2996936\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the 24th ACM SIGSPATIAL International Conference on Advances in Geographic Information Systems","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/2996913.2996936","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
A visual and computational analysis approach for exploring significant locations and time periods along a bus route
Understanding human mobility is important for planning and delivering various services in urban area. An important element for mobility understanding is to understand the context in which the movement takes place. In this direction, we propose a method for identifying significant locations and time periods along a bus route. The significance is based on special characteristics that locations have during specific time periods as determined from their effect of these locations on the movement of the bus. The method extracts discriminative features from the space, time and other selected attributes and then classifies locations and time periods into 5 significance classes. The classes are then rendered in different views for discovering and understanding patterns. The novelty of the method is an explicit consideration of the time dimension at different granularity levels and a visualization that facilitates comparison across the space and time dimensions while avoiding a visual clutter. We demonstrate the applicability of our approach by applying it on a large set of bus trajectories.