在对流干燥台上晒白卷心菜

Zh. A. Petrova, V. Paziuk, P. Vishnevsky, D. Grakov, О. Grakov
{"title":"在对流干燥台上晒白卷心菜","authors":"Zh. A. Petrova, V. Paziuk, P. Vishnevsky, D. Grakov, О. Grakov","doi":"10.31472/ttpe.3.2021.3","DOIUrl":null,"url":null,"abstract":"Known methods of production of dried cabbage are long-term production processes that take place within 12… 24 hours. Therefore, it is necessary to develop new methods of drying and intensification of this process. \nThe article presents experimental studies of the kinetics of the drying process of white cabbage with different energy supply and their combinations, such as convective, infrared and convective-infrared drying methods. The main criterion for choosing a rational mode of drying is the quality of raw materials after heat treatment, in particular the visual assessment of color by temperature. \nDuring convective drying, the analysis of temperature regimes for process intensity and quality of raw materials was performed. The drying mode of 60ºC which satisfies all requirements for quality of material was chosen. To speed up the process, it is proposed to reduce the drying time by introducing a step mode of 80 / 60ºC, which also reduces the energy component. \nInfrared radiation intensifies the process due to the rapid heating of the material, but in turn it burns. Therefore, a combined convective-infrared method is proposed in which the temperature in the product did not exceed 60 ° C. This method of drying showed good results with a shorter drying time.Infrared radiation intensifies the process due to the rapid heating of the material, but in turn it burns. Therefore, a combined convective-infrared method is proposed in which the temperature in the product did not exceed 60 ° C. This method of drying showed good results with a shorter drying time.","PeriodicalId":23079,"journal":{"name":"Thermophysics and Thermal Power Engineering","volume":"72 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2021-10-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"DRYING WHITE CABBAGE ON A CONVECTIVE DRYING BENCH\",\"authors\":\"Zh. A. Petrova, V. Paziuk, P. Vishnevsky, D. Grakov, О. Grakov\",\"doi\":\"10.31472/ttpe.3.2021.3\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Known methods of production of dried cabbage are long-term production processes that take place within 12… 24 hours. Therefore, it is necessary to develop new methods of drying and intensification of this process. \\nThe article presents experimental studies of the kinetics of the drying process of white cabbage with different energy supply and their combinations, such as convective, infrared and convective-infrared drying methods. The main criterion for choosing a rational mode of drying is the quality of raw materials after heat treatment, in particular the visual assessment of color by temperature. \\nDuring convective drying, the analysis of temperature regimes for process intensity and quality of raw materials was performed. The drying mode of 60ºC which satisfies all requirements for quality of material was chosen. To speed up the process, it is proposed to reduce the drying time by introducing a step mode of 80 / 60ºC, which also reduces the energy component. \\nInfrared radiation intensifies the process due to the rapid heating of the material, but in turn it burns. Therefore, a combined convective-infrared method is proposed in which the temperature in the product did not exceed 60 ° C. This method of drying showed good results with a shorter drying time.Infrared radiation intensifies the process due to the rapid heating of the material, but in turn it burns. Therefore, a combined convective-infrared method is proposed in which the temperature in the product did not exceed 60 ° C. This method of drying showed good results with a shorter drying time.\",\"PeriodicalId\":23079,\"journal\":{\"name\":\"Thermophysics and Thermal Power Engineering\",\"volume\":\"72 1\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2021-10-08\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Thermophysics and Thermal Power Engineering\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.31472/ttpe.3.2021.3\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Thermophysics and Thermal Power Engineering","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.31472/ttpe.3.2021.3","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

已知的生产干卷心菜的方法是在12…24小时内进行的长期生产过程。因此,有必要开发新的干燥和强化这一过程的方法。本文对对流、红外、对流-红外三种不同供能方式及其组合的大白菜干燥过程动力学进行了实验研究。选择合理的干燥方式的主要标准是热处理后的原料质量,特别是通过温度对颜色的视觉评价。在对流干燥过程中,对过程强度和原料质量的温度制度进行了分析。选择了满足物料质量要求的60℃干燥方式。为了加快这一过程,提出通过引入80 / 60ºC的阶跃模式来缩短干燥时间,同时也减少了能量成分。由于材料的快速加热,红外辐射加剧了这一过程,但反过来又会燃烧。因此,提出了一种产品温度不超过60℃的对流-红外联合干燥方法,该方法干燥效果好,干燥时间短。由于材料的快速加热,红外辐射加剧了这一过程,但反过来又会燃烧。因此,提出了一种产品温度不超过60℃的对流-红外联合干燥方法,该方法干燥效果好,干燥时间短。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
DRYING WHITE CABBAGE ON A CONVECTIVE DRYING BENCH
Known methods of production of dried cabbage are long-term production processes that take place within 12… 24 hours. Therefore, it is necessary to develop new methods of drying and intensification of this process. The article presents experimental studies of the kinetics of the drying process of white cabbage with different energy supply and their combinations, such as convective, infrared and convective-infrared drying methods. The main criterion for choosing a rational mode of drying is the quality of raw materials after heat treatment, in particular the visual assessment of color by temperature. During convective drying, the analysis of temperature regimes for process intensity and quality of raw materials was performed. The drying mode of 60ºC which satisfies all requirements for quality of material was chosen. To speed up the process, it is proposed to reduce the drying time by introducing a step mode of 80 / 60ºC, which also reduces the energy component. Infrared radiation intensifies the process due to the rapid heating of the material, but in turn it burns. Therefore, a combined convective-infrared method is proposed in which the temperature in the product did not exceed 60 ° C. This method of drying showed good results with a shorter drying time.Infrared radiation intensifies the process due to the rapid heating of the material, but in turn it burns. Therefore, a combined convective-infrared method is proposed in which the temperature in the product did not exceed 60 ° C. This method of drying showed good results with a shorter drying time.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
THE FLOW OF LUBRICANT IN A NARROW WEDGE-SHAPED SLOT WITH A MOVABLE WALL IS CONSIDERED AERODYNAMICS AND MIXTURE FORMATION IN BURNERS WITH A MULTI-ROW JET FUEL SUPPLY SYSTEM IMPROVEMENT OF THERMAL MODES OF WARMING UP HIGH-TEMPERATURE UNITS METHOD OF REDUCING WATER HARDNESS SALTS AND HEAT AND MASS EXCHANGE EQUIPMENT FOR ITS IMPLEMENTATION INFLUENCE OF COMBINED DRYING OF COLLOID CAPILLARY-POROUS MATERIALS ON ENERGY EXPENDITURES
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1