铬铁渣骨料地聚合物混凝土的高温研究

IF 0.5 4区 工程技术 Q4 CONSTRUCTION & BUILDING TECHNOLOGY Cement Wapno Beton Pub Date : 2021-01-01 DOI:10.32047/cwb.2021.26.4.6
P. Indu, S. Greeshma
{"title":"铬铁渣骨料地聚合物混凝土的高温研究","authors":"P. Indu, S. Greeshma","doi":"10.32047/cwb.2021.26.4.6","DOIUrl":null,"url":null,"abstract":"This paper deals with the strength and mass loss of geopolymer concrete in comparison with conventional cement concrete after elevated temperature exposure. In this study, the coarse aggregates of the conventional geopolymer concrete are replaced partially (40%) with ferrochrome slag aggregates, to obtain the replacement mix of geopolymer concrete. The microstructure of geopolymer concrete was examined by XRD, X-ray tomography, and SEM and also discussed in this paper. The results concluded that after exposure at elevated temperature, the conventional cement concrete has a strength loss of about 18% higher than the geopolymer concrete. It was also noted that though replacement geopolymer mix exhibited the strength loss of 24.4% and mass loss of 1.35% higher than the conventional geopolymer mix, it had greater strength than conventional geopolymer mix, for most of the temperature ranges. Thus the replacement mix of geopolymer concrete behaves better than conventional geopolymer concrete, both at ambient and elevated temperature conditions.","PeriodicalId":55632,"journal":{"name":"Cement Wapno Beton","volume":"18 1","pages":""},"PeriodicalIF":0.5000,"publicationDate":"2021-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":"{\"title\":\"Elevated temperature study on geopolymer concrete with ferrochrome slag aggregates\",\"authors\":\"P. Indu, S. Greeshma\",\"doi\":\"10.32047/cwb.2021.26.4.6\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This paper deals with the strength and mass loss of geopolymer concrete in comparison with conventional cement concrete after elevated temperature exposure. In this study, the coarse aggregates of the conventional geopolymer concrete are replaced partially (40%) with ferrochrome slag aggregates, to obtain the replacement mix of geopolymer concrete. The microstructure of geopolymer concrete was examined by XRD, X-ray tomography, and SEM and also discussed in this paper. The results concluded that after exposure at elevated temperature, the conventional cement concrete has a strength loss of about 18% higher than the geopolymer concrete. It was also noted that though replacement geopolymer mix exhibited the strength loss of 24.4% and mass loss of 1.35% higher than the conventional geopolymer mix, it had greater strength than conventional geopolymer mix, for most of the temperature ranges. Thus the replacement mix of geopolymer concrete behaves better than conventional geopolymer concrete, both at ambient and elevated temperature conditions.\",\"PeriodicalId\":55632,\"journal\":{\"name\":\"Cement Wapno Beton\",\"volume\":\"18 1\",\"pages\":\"\"},\"PeriodicalIF\":0.5000,\"publicationDate\":\"2021-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"2\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Cement Wapno Beton\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://doi.org/10.32047/cwb.2021.26.4.6\",\"RegionNum\":4,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"CONSTRUCTION & BUILDING TECHNOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Cement Wapno Beton","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.32047/cwb.2021.26.4.6","RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"CONSTRUCTION & BUILDING TECHNOLOGY","Score":null,"Total":0}
引用次数: 2

摘要

本文研究了地聚合物混凝土与常规水泥混凝土高温暴露后的强度和质量损失。本研究将常规地聚合物混凝土的粗骨料部分(40%)替换为铬铁渣骨料,得到地聚合物混凝土的替代配合比。采用x射线衍射(XRD)、x射线层析成像(X-ray tomography)和扫描电子显微镜(SEM)对地聚合物混凝土的微观结构进行了研究,并对其进行了讨论。结果表明,高温暴露后,常规水泥混凝土的强度损失比地聚合物混凝土高18%左右。还注意到,虽然替代地聚合物混合物的强度损失比常规地聚合物混合物高24.4%,质量损失高1.35%,但在大多数温度范围内,它的强度都高于常规地聚合物混合物。因此,无论是在环境条件下还是在高温条件下,地聚合物混凝土的替代配合比传统地聚合物混凝土性能更好。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Elevated temperature study on geopolymer concrete with ferrochrome slag aggregates
This paper deals with the strength and mass loss of geopolymer concrete in comparison with conventional cement concrete after elevated temperature exposure. In this study, the coarse aggregates of the conventional geopolymer concrete are replaced partially (40%) with ferrochrome slag aggregates, to obtain the replacement mix of geopolymer concrete. The microstructure of geopolymer concrete was examined by XRD, X-ray tomography, and SEM and also discussed in this paper. The results concluded that after exposure at elevated temperature, the conventional cement concrete has a strength loss of about 18% higher than the geopolymer concrete. It was also noted that though replacement geopolymer mix exhibited the strength loss of 24.4% and mass loss of 1.35% higher than the conventional geopolymer mix, it had greater strength than conventional geopolymer mix, for most of the temperature ranges. Thus the replacement mix of geopolymer concrete behaves better than conventional geopolymer concrete, both at ambient and elevated temperature conditions.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Cement Wapno Beton
Cement Wapno Beton CONSTRUCTION & BUILDING TECHNOLOGY-MATERIALS SCIENCE, COMPOSITES
CiteScore
1.30
自引率
28.60%
发文量
0
审稿时长
>12 weeks
期刊介绍: The Publisher of the scientific bimonthly of international circulation, entitled "Cement-Wapno-Beton" ["Cement-Lime-Concrete"], is the Fundacja Cement, Wapno, Beton [Foundation Cement, Lime, Concrete]. The periodical is dedicated to the issues concerning mineral setting materials and concrete. It is concerned with the publication of academic and research works from the field of chemistry and technology of building setting materials and concrete
期刊最新文献
Dissimilar surface treated recycled coarse aggregate in concrete Air entrance additive effect on geopolymer mortar thermal conductivity Efficiency evaluation of a commercial superficial strengthening system applied to AAC-block walls under diagonal compression Production of environmentally-friendly, high-strength repair mortar for the restoration of historical buildings Rheological properties and mechanical strength of self-compacting mortars produced with marble powder and calcined clay
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1