混合储能光伏系统的电源管理策略(电池/超级电容器)

Z. Mokrani, Djamila Rekioua, N. Mebarki, A. Oubelaid, K. Kakouche, T. Rekioua
{"title":"混合储能光伏系统的电源管理策略(电池/超级电容器)","authors":"Z. Mokrani, Djamila Rekioua, N. Mebarki, A. Oubelaid, K. Kakouche, T. Rekioua","doi":"10.24084/repqj21.343","DOIUrl":null,"url":null,"abstract":"This paper is presented in regard to the interesting continuous interest attributed to photovoltaic energy systems (PESs). To this aim, a study of an isolated photovoltaic system with hybrid storage (HS) is presented. Supercapacitors (SCs) are typically used because of their high specific power density.. Combining batteries and supercapacitors is a solution to maximize their benefits. In this work, the HS is a combinaison of batteries and supercapacitors. The goal of this work is to build a new management algorithm. This aforementioned technique will ensure the control of energy flow between system power sources. Furthermore, it will regulate the charge/discharge cycles of the proposed HS by maintaining their state of charge (SOC) between a desired minimum and maximum values. The proposed method is simple, efficient and it is not computationally heavy. The obtained simulation results are satisfactory and show the interest and effectiveness of the proposed management strategy.","PeriodicalId":21076,"journal":{"name":"Renewable Energy and Power Quality Journal","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2023-07-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Power management strategy for photovoltaic system with hybrid storage (Batteries/Supercapacitors)\",\"authors\":\"Z. Mokrani, Djamila Rekioua, N. Mebarki, A. Oubelaid, K. Kakouche, T. Rekioua\",\"doi\":\"10.24084/repqj21.343\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This paper is presented in regard to the interesting continuous interest attributed to photovoltaic energy systems (PESs). To this aim, a study of an isolated photovoltaic system with hybrid storage (HS) is presented. Supercapacitors (SCs) are typically used because of their high specific power density.. Combining batteries and supercapacitors is a solution to maximize their benefits. In this work, the HS is a combinaison of batteries and supercapacitors. The goal of this work is to build a new management algorithm. This aforementioned technique will ensure the control of energy flow between system power sources. Furthermore, it will regulate the charge/discharge cycles of the proposed HS by maintaining their state of charge (SOC) between a desired minimum and maximum values. The proposed method is simple, efficient and it is not computationally heavy. The obtained simulation results are satisfactory and show the interest and effectiveness of the proposed management strategy.\",\"PeriodicalId\":21076,\"journal\":{\"name\":\"Renewable Energy and Power Quality Journal\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2023-07-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Renewable Energy and Power Quality Journal\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.24084/repqj21.343\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"Energy\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Renewable Energy and Power Quality Journal","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.24084/repqj21.343","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"Energy","Score":null,"Total":0}
引用次数: 0

摘要

本文介绍了关于光伏能源系统(PESs)的有趣的连续兴趣。为此,研究了一种具有混合储能的隔离光伏系统。超级电容器(SCs)通常使用,因为它们的高比功率密度。将电池和超级电容器结合起来是使其效益最大化的解决方案。在这项工作中,HS是电池和超级电容器的结合。这项工作的目标是建立一个新的管理算法。上述技术将确保系统电源之间的能量流的控制。此外,它将通过将其荷电状态(SOC)维持在期望的最小值和最大值之间来调节所提议的HS的充放电周期。该方法简单、高效、计算量小。仿真结果令人满意,表明了所提出的管理策略的有效性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Power management strategy for photovoltaic system with hybrid storage (Batteries/Supercapacitors)
This paper is presented in regard to the interesting continuous interest attributed to photovoltaic energy systems (PESs). To this aim, a study of an isolated photovoltaic system with hybrid storage (HS) is presented. Supercapacitors (SCs) are typically used because of their high specific power density.. Combining batteries and supercapacitors is a solution to maximize their benefits. In this work, the HS is a combinaison of batteries and supercapacitors. The goal of this work is to build a new management algorithm. This aforementioned technique will ensure the control of energy flow between system power sources. Furthermore, it will regulate the charge/discharge cycles of the proposed HS by maintaining their state of charge (SOC) between a desired minimum and maximum values. The proposed method is simple, efficient and it is not computationally heavy. The obtained simulation results are satisfactory and show the interest and effectiveness of the proposed management strategy.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Renewable Energy and Power Quality Journal
Renewable Energy and Power Quality Journal Energy-Energy Engineering and Power Technology
CiteScore
0.70
自引率
0.00%
发文量
147
期刊最新文献
Experimental set-up to study power quality in single-phase split-phase distribution systems Analysis of Synthetic Inertia Applied to Wind Farms Cosine Windows in Interpolated DFT-based Method for an Accurate High-Frequency Distortion Assessment in Power Systems Thermal and electrical performance prediction of an FSPV system: a case study in the Douro/Portugal climatic conditions I-V Characteristics Measuring System for PV Generator based on PDM Inverter
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1