掺氢对天然气管道管网水力和热力特性的影响

IF 1.8 4区 工程技术 Q4 ENERGY & FUELS Oil & Gas Science and Technology – Revue d’IFP Energies nouvelles Pub Date : 2021-01-01 DOI:10.2516/ogst/2021052
Heng Zhang, Jingfa Li, Yue Su, Peng Wang, Bo Yu
{"title":"掺氢对天然气管道管网水力和热力特性的影响","authors":"Heng Zhang, Jingfa Li, Yue Su, Peng Wang, Bo Yu","doi":"10.2516/ogst/2021052","DOIUrl":null,"url":null,"abstract":"Blending a fraction of hydrogen into the natural gas pipeline or urban pipe network is an efficient approach for hydrogen delivery. In this paper, the mathematical model of Hydrogen-Blended Natural Gas (HBNG) transportation is established, and the influences of hydrogen blending on hydraulic and thermal characteristics of natural gas pipeline and pipe network are numerically investigated. The impact of hydrogen blending ratio on the performance of centrifugal compressor and the operating point for joint operation of pipeline and compressor is discussed. Results illustrate that compared with natural gas without hydrogen, the hydrogen blending can reduce the pipeline friction resistance and increase the volume flow rate. However, due to the lower volumetric calorific value of HBNG, the energy flow rate actually decreases under the same transportation condition. Meanwhile, the temperature drop along the pipeline slows down due to the blended hydrogen. The performance degradation of centrifugal compressor occurs with the increasing hydrogen blending ratio, and the operating point for joint operation of pipeline and centrifugal compressor moves to the direction of higher volume flow rate and lower pressure. This study is expected to shed a light on the hydrogen delivery by natural gas pipelines and pipe networks.","PeriodicalId":19424,"journal":{"name":"Oil & Gas Science and Technology – Revue d’IFP Energies nouvelles","volume":null,"pages":null},"PeriodicalIF":1.8000,"publicationDate":"2021-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"11","resultStr":"{\"title\":\"Effects of hydrogen blending on hydraulic and thermal characteristics of natural gas pipeline and pipe network\",\"authors\":\"Heng Zhang, Jingfa Li, Yue Su, Peng Wang, Bo Yu\",\"doi\":\"10.2516/ogst/2021052\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Blending a fraction of hydrogen into the natural gas pipeline or urban pipe network is an efficient approach for hydrogen delivery. In this paper, the mathematical model of Hydrogen-Blended Natural Gas (HBNG) transportation is established, and the influences of hydrogen blending on hydraulic and thermal characteristics of natural gas pipeline and pipe network are numerically investigated. The impact of hydrogen blending ratio on the performance of centrifugal compressor and the operating point for joint operation of pipeline and compressor is discussed. Results illustrate that compared with natural gas without hydrogen, the hydrogen blending can reduce the pipeline friction resistance and increase the volume flow rate. However, due to the lower volumetric calorific value of HBNG, the energy flow rate actually decreases under the same transportation condition. Meanwhile, the temperature drop along the pipeline slows down due to the blended hydrogen. The performance degradation of centrifugal compressor occurs with the increasing hydrogen blending ratio, and the operating point for joint operation of pipeline and centrifugal compressor moves to the direction of higher volume flow rate and lower pressure. This study is expected to shed a light on the hydrogen delivery by natural gas pipelines and pipe networks.\",\"PeriodicalId\":19424,\"journal\":{\"name\":\"Oil & Gas Science and Technology – Revue d’IFP Energies nouvelles\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":1.8000,\"publicationDate\":\"2021-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"11\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Oil & Gas Science and Technology – Revue d’IFP Energies nouvelles\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://doi.org/10.2516/ogst/2021052\",\"RegionNum\":4,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"ENERGY & FUELS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Oil & Gas Science and Technology – Revue d’IFP Energies nouvelles","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.2516/ogst/2021052","RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"ENERGY & FUELS","Score":null,"Total":0}
引用次数: 11

摘要

将一部分氢气混合到天然气管道或城市管网中是一种有效的氢气输送方法。本文建立了混氢天然气(HBNG)输气的数学模型,数值研究了混氢对天然气管道管网水力和热力特性的影响。讨论了配氢比对离心压缩机性能的影响以及管道与压缩机联合运行的工作点。结果表明,与无氢天然气相比,掺氢天然气可以降低管道摩擦阻力,提高体积流量。然而,由于HBNG的体积热值较低,在相同的运输条件下,能量流率反而降低。同时,由于氢气的混合,管道沿线的温度下降速度减慢。随着配氢比的增大,离心式压缩机性能下降,管道与离心式压缩机联合运行的工作点向高容积流量、低压力方向移动。这项研究有望揭示通过天然气管道和管网输送氢气的问题。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Effects of hydrogen blending on hydraulic and thermal characteristics of natural gas pipeline and pipe network
Blending a fraction of hydrogen into the natural gas pipeline or urban pipe network is an efficient approach for hydrogen delivery. In this paper, the mathematical model of Hydrogen-Blended Natural Gas (HBNG) transportation is established, and the influences of hydrogen blending on hydraulic and thermal characteristics of natural gas pipeline and pipe network are numerically investigated. The impact of hydrogen blending ratio on the performance of centrifugal compressor and the operating point for joint operation of pipeline and compressor is discussed. Results illustrate that compared with natural gas without hydrogen, the hydrogen blending can reduce the pipeline friction resistance and increase the volume flow rate. However, due to the lower volumetric calorific value of HBNG, the energy flow rate actually decreases under the same transportation condition. Meanwhile, the temperature drop along the pipeline slows down due to the blended hydrogen. The performance degradation of centrifugal compressor occurs with the increasing hydrogen blending ratio, and the operating point for joint operation of pipeline and centrifugal compressor moves to the direction of higher volume flow rate and lower pressure. This study is expected to shed a light on the hydrogen delivery by natural gas pipelines and pipe networks.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
2.70
自引率
0.00%
发文量
0
审稿时长
2.7 months
期刊介绍: OGST - Revue d''IFP Energies nouvelles is a journal concerning all disciplines and fields relevant to exploration, production, refining, petrochemicals, and the use and economics of petroleum, natural gas, and other sources of energy, in particular alternative energies with in view of the energy transition. OGST - Revue d''IFP Energies nouvelles has an Editorial Committee made up of 15 leading European personalities from universities and from industry, and is indexed in the major international bibliographical databases. The journal publishes review articles, in English or in French, and topical issues, giving an overview of the contributions of complementary disciplines in tackling contemporary problems. Each article includes a detailed abstract in English. However, a French translation of the summaries can be provided to readers on request. Summaries of all papers published in the revue from 1974 can be consulted on this site. Over 1 000 papers that have been published since 1997 are freely available in full text form (as pdf files). Currently, over 10 000 downloads are recorded per month. Researchers in the above fields are invited to submit an article. Rigorous selection of the articles is ensured by a review process that involves IFPEN and external experts as well as the members of the editorial committee. It is preferable to submit the articles in English, either as independent papers or in association with one of the upcoming topical issues.
期刊最新文献
Preliminary analyses of synthetic carbonate plugs: consolidation, petrophysical and wettability properties Analysis of well testing results for single phase flow in reservoirs with percolation structure Digital twin based reference architecture for petrochemical monitoring and fault diagnosis Identification of reservoir fractures on FMI image logs using Canny and Sobel edge detection algorithms Ensemble-based method with combined fractional flow model for waterflooding optimization
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1