{"title":"考虑压缩机非设计模型的恒压抽水蓄能与压缩空气蓄能系统性能分析","authors":"Xi'an","doi":"10.4236/EPE.2021.134B002","DOIUrl":null,"url":null,"abstract":"With the wide application of renewable energy, energy storage technology has become a research hotspot. In order to overcome the shortcomings of energy loss caused by compression heating in compressed air energy storage technology, a novel constant-pressure pumped hydro combined with compressed air energy storage system was proposed. To deepen the understanding of the system and make the analysis closer to reality, this paper adopted an off-design model of the compressor to calculate and analyze the effect of key parameters on system thermodynamics performance. In addition, the results of this paper were compared with previous research results, and it was found that the current efficiency considering the off-design model of compressor was generally 2% - 5% higher than the previous efficiency. With increased preset pressure or with decreased terminal pressure, both the previous efficiency and current efficiency of the system increased. The exergy destruction coefficient of the throttle valve reached 4%. System efficiency was more sensitive to changes in water pump efficiency and hydroturbine efficiency.","PeriodicalId":62938,"journal":{"name":"能源与动力工程(英文)","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2021-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":"{\"title\":\"Performance Analysis of Constant-Pressure Pumped Hydro Combined with Compressed Air Energy Storage System Considering Off-Design Model of Compressor\",\"authors\":\"Xi'an\",\"doi\":\"10.4236/EPE.2021.134B002\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"With the wide application of renewable energy, energy storage technology has become a research hotspot. In order to overcome the shortcomings of energy loss caused by compression heating in compressed air energy storage technology, a novel constant-pressure pumped hydro combined with compressed air energy storage system was proposed. To deepen the understanding of the system and make the analysis closer to reality, this paper adopted an off-design model of the compressor to calculate and analyze the effect of key parameters on system thermodynamics performance. In addition, the results of this paper were compared with previous research results, and it was found that the current efficiency considering the off-design model of compressor was generally 2% - 5% higher than the previous efficiency. With increased preset pressure or with decreased terminal pressure, both the previous efficiency and current efficiency of the system increased. The exergy destruction coefficient of the throttle valve reached 4%. System efficiency was more sensitive to changes in water pump efficiency and hydroturbine efficiency.\",\"PeriodicalId\":62938,\"journal\":{\"name\":\"能源与动力工程(英文)\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2021-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"3\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"能源与动力工程(英文)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.4236/EPE.2021.134B002\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"能源与动力工程(英文)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.4236/EPE.2021.134B002","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Performance Analysis of Constant-Pressure Pumped Hydro Combined with Compressed Air Energy Storage System Considering Off-Design Model of Compressor
With the wide application of renewable energy, energy storage technology has become a research hotspot. In order to overcome the shortcomings of energy loss caused by compression heating in compressed air energy storage technology, a novel constant-pressure pumped hydro combined with compressed air energy storage system was proposed. To deepen the understanding of the system and make the analysis closer to reality, this paper adopted an off-design model of the compressor to calculate and analyze the effect of key parameters on system thermodynamics performance. In addition, the results of this paper were compared with previous research results, and it was found that the current efficiency considering the off-design model of compressor was generally 2% - 5% higher than the previous efficiency. With increased preset pressure or with decreased terminal pressure, both the previous efficiency and current efficiency of the system increased. The exergy destruction coefficient of the throttle valve reached 4%. System efficiency was more sensitive to changes in water pump efficiency and hydroturbine efficiency.