{"title":"统计中的小波方法:一些最新发展及其应用","authors":"A. Antoniadis","doi":"10.1214/07-SS014","DOIUrl":null,"url":null,"abstract":"The development of wavelet theory has in recent years spawned applications in signal processing, in fast algorithms for integral transforms, and in image and function representation methods. This last application has stimulated interest in wavelet applications to statistics and to the analysis of experimental data, with many successes in the efficient analysis, processing, and compression of noisy signals and images. This is a selective review article that attempts to synthesize some recent work on ``nonlinear'' wavelet methods in nonparametric curve estimation and their role on a variety of applications. After a short introduction to wavelet theory, we discuss in detail several wavelet shrinkage and wavelet thresholding estimators, scattered in the literature and developed, under more or less standard settings, for density estimation from i.i.d. observations or to denoise data modeled as observations of a signal with additive noise. Most of these methods are fitted into the general concept of regularization with appropriately chosen penalty functions. A narrow range of applications in major areas of statistics is also discussed such as partial linear regression models and functional index models. The usefulness of all these methods are illustrated by means of simulations and practical examples.","PeriodicalId":46627,"journal":{"name":"Statistics Surveys","volume":"74 1","pages":"16-55"},"PeriodicalIF":11.0000,"publicationDate":"2007-12-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"174","resultStr":"{\"title\":\"Wavelet methods in statistics: Some recent developments and their applications\",\"authors\":\"A. Antoniadis\",\"doi\":\"10.1214/07-SS014\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The development of wavelet theory has in recent years spawned applications in signal processing, in fast algorithms for integral transforms, and in image and function representation methods. This last application has stimulated interest in wavelet applications to statistics and to the analysis of experimental data, with many successes in the efficient analysis, processing, and compression of noisy signals and images. This is a selective review article that attempts to synthesize some recent work on ``nonlinear'' wavelet methods in nonparametric curve estimation and their role on a variety of applications. After a short introduction to wavelet theory, we discuss in detail several wavelet shrinkage and wavelet thresholding estimators, scattered in the literature and developed, under more or less standard settings, for density estimation from i.i.d. observations or to denoise data modeled as observations of a signal with additive noise. Most of these methods are fitted into the general concept of regularization with appropriately chosen penalty functions. A narrow range of applications in major areas of statistics is also discussed such as partial linear regression models and functional index models. The usefulness of all these methods are illustrated by means of simulations and practical examples.\",\"PeriodicalId\":46627,\"journal\":{\"name\":\"Statistics Surveys\",\"volume\":\"74 1\",\"pages\":\"16-55\"},\"PeriodicalIF\":11.0000,\"publicationDate\":\"2007-12-03\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"174\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Statistics Surveys\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1214/07-SS014\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"STATISTICS & PROBABILITY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Statistics Surveys","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1214/07-SS014","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"STATISTICS & PROBABILITY","Score":null,"Total":0}
Wavelet methods in statistics: Some recent developments and their applications
The development of wavelet theory has in recent years spawned applications in signal processing, in fast algorithms for integral transforms, and in image and function representation methods. This last application has stimulated interest in wavelet applications to statistics and to the analysis of experimental data, with many successes in the efficient analysis, processing, and compression of noisy signals and images. This is a selective review article that attempts to synthesize some recent work on ``nonlinear'' wavelet methods in nonparametric curve estimation and their role on a variety of applications. After a short introduction to wavelet theory, we discuss in detail several wavelet shrinkage and wavelet thresholding estimators, scattered in the literature and developed, under more or less standard settings, for density estimation from i.i.d. observations or to denoise data modeled as observations of a signal with additive noise. Most of these methods are fitted into the general concept of regularization with appropriately chosen penalty functions. A narrow range of applications in major areas of statistics is also discussed such as partial linear regression models and functional index models. The usefulness of all these methods are illustrated by means of simulations and practical examples.
期刊介绍:
Statistics Surveys publishes survey articles in theoretical, computational, and applied statistics. The style of articles may range from reviews of recent research to graduate textbook exposition. Articles may be broad or narrow in scope. The essential requirements are a well specified topic and target audience, together with clear exposition. Statistics Surveys is sponsored by the American Statistical Association, the Bernoulli Society, the Institute of Mathematical Statistics, and by the Statistical Society of Canada.