{"title":"微带贴片天线和阵列天线在远程医疗中的增益增强","authors":"Parisa Shirvani, H. Shirzadfar","doi":"10.21272/jnep.12(5).05034","DOIUrl":null,"url":null,"abstract":"Telemedicine is a form of remote medical practice using information and communication technologies which facilitates distance mediation between the patient and the medical staff. In rural or remote areas where many of the specialized medical services required by the community do not reach, telemedicine can be a viable and reliable alternative to facilitate access to these services as the use of telemedicine technology leads to higher levels of health care and treatment. As in telemedicine systems antennas have an important role, we focus on the optimal design of used antennas to achieve better results. The role of an antenna is to convert the electrical energy of a signal into electromagnetic energy, or conversely to convert electromagnetic energy into electrical energy. A transmitting antenna is a device that transmits energy between an emitter and the free space where this energy will propagate. The rapid development of wireless communication systems has led to numerous improvements in telecommunication antennas and systems to meet the needs of telemedicine applications. The microstrip patch antenna is a planar antenna that has received a lot of attention due to its flat geometry. These types of antennas are very popular among designers and are used in many applications. This paper presents an improved patch antenna and array antenna with microstrip feed line using three kinds of metamaterial (MTM) structures that can be very useful in telemedicine systems. A metamaterial is an artificial composite material with unnatural electromagnetic properties. Different structures are considered and analyzed to reach a good performance antenna. Proposed structures increase the gain of antennas which are used in telemedicine systems. The structures of the mushroom-like electromagnetic band gap (EBG), the one layer and two-layer woodpile EBG in straight and curved forms have been discussed and analyzed. The operating frequency is 2.45 GHz for telemedicine applications. The simulation process has been done through High Frequency Structure Simulator (HFSS) software and the results are compared.","PeriodicalId":16514,"journal":{"name":"Journal of Nano- and Electronic Physics","volume":"30 1","pages":"05034-1-05034-5"},"PeriodicalIF":0.0000,"publicationDate":"2020-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Gain Enhancement of Microstrip Patch Antenna and Array Antenna Using Different Metamaterial Structures for Telemedicine Applications\",\"authors\":\"Parisa Shirvani, H. Shirzadfar\",\"doi\":\"10.21272/jnep.12(5).05034\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Telemedicine is a form of remote medical practice using information and communication technologies which facilitates distance mediation between the patient and the medical staff. In rural or remote areas where many of the specialized medical services required by the community do not reach, telemedicine can be a viable and reliable alternative to facilitate access to these services as the use of telemedicine technology leads to higher levels of health care and treatment. As in telemedicine systems antennas have an important role, we focus on the optimal design of used antennas to achieve better results. The role of an antenna is to convert the electrical energy of a signal into electromagnetic energy, or conversely to convert electromagnetic energy into electrical energy. A transmitting antenna is a device that transmits energy between an emitter and the free space where this energy will propagate. The rapid development of wireless communication systems has led to numerous improvements in telecommunication antennas and systems to meet the needs of telemedicine applications. The microstrip patch antenna is a planar antenna that has received a lot of attention due to its flat geometry. These types of antennas are very popular among designers and are used in many applications. This paper presents an improved patch antenna and array antenna with microstrip feed line using three kinds of metamaterial (MTM) structures that can be very useful in telemedicine systems. A metamaterial is an artificial composite material with unnatural electromagnetic properties. Different structures are considered and analyzed to reach a good performance antenna. Proposed structures increase the gain of antennas which are used in telemedicine systems. The structures of the mushroom-like electromagnetic band gap (EBG), the one layer and two-layer woodpile EBG in straight and curved forms have been discussed and analyzed. The operating frequency is 2.45 GHz for telemedicine applications. The simulation process has been done through High Frequency Structure Simulator (HFSS) software and the results are compared.\",\"PeriodicalId\":16514,\"journal\":{\"name\":\"Journal of Nano- and Electronic Physics\",\"volume\":\"30 1\",\"pages\":\"05034-1-05034-5\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2020-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Nano- and Electronic Physics\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.21272/jnep.12(5).05034\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Nano- and Electronic Physics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.21272/jnep.12(5).05034","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Gain Enhancement of Microstrip Patch Antenna and Array Antenna Using Different Metamaterial Structures for Telemedicine Applications
Telemedicine is a form of remote medical practice using information and communication technologies which facilitates distance mediation between the patient and the medical staff. In rural or remote areas where many of the specialized medical services required by the community do not reach, telemedicine can be a viable and reliable alternative to facilitate access to these services as the use of telemedicine technology leads to higher levels of health care and treatment. As in telemedicine systems antennas have an important role, we focus on the optimal design of used antennas to achieve better results. The role of an antenna is to convert the electrical energy of a signal into electromagnetic energy, or conversely to convert electromagnetic energy into electrical energy. A transmitting antenna is a device that transmits energy between an emitter and the free space where this energy will propagate. The rapid development of wireless communication systems has led to numerous improvements in telecommunication antennas and systems to meet the needs of telemedicine applications. The microstrip patch antenna is a planar antenna that has received a lot of attention due to its flat geometry. These types of antennas are very popular among designers and are used in many applications. This paper presents an improved patch antenna and array antenna with microstrip feed line using three kinds of metamaterial (MTM) structures that can be very useful in telemedicine systems. A metamaterial is an artificial composite material with unnatural electromagnetic properties. Different structures are considered and analyzed to reach a good performance antenna. Proposed structures increase the gain of antennas which are used in telemedicine systems. The structures of the mushroom-like electromagnetic band gap (EBG), the one layer and two-layer woodpile EBG in straight and curved forms have been discussed and analyzed. The operating frequency is 2.45 GHz for telemedicine applications. The simulation process has been done through High Frequency Structure Simulator (HFSS) software and the results are compared.