层状和传统半导体之间的相对相干性:异质集成的独特机会

IF 16.1 1区 工程技术 Q1 ENGINEERING, MANUFACTURING International Journal of Extreme Manufacturing Pub Date : 2023-07-06 DOI:10.1088/2631-7990/ace501
Zhuofan Chen, Xiaonan Deng, Simian Zhang, Yuqi Wang, Yifei Wu, Shengxian Ke, Junshang Zhang, Fucheng Liu, Jianing Liu, Yingjie Liu, Yuchun Lin, A. Hanna, Zhengcao Li, Chen Wang
{"title":"层状和传统半导体之间的相对相干性:异质集成的独特机会","authors":"Zhuofan Chen, Xiaonan Deng, Simian Zhang, Yuqi Wang, Yifei Wu, Shengxian Ke, Junshang Zhang, Fucheng Liu, Jianing Liu, Yingjie Liu, Yuchun Lin, A. Hanna, Zhengcao Li, Chen Wang","doi":"10.1088/2631-7990/ace501","DOIUrl":null,"url":null,"abstract":"As Moore’s law deteriorates, the research and development of new materials system are crucial for transitioning into the post Moore era. Traditional semiconductor materials, such as silicon, have served as the cornerstone of modern technologies for over half a century. This has been due to extensive research and engineering on new techniques to continuously enrich silicon-based materials system and, subsequently, to develop better performed silicon-based devices. Meanwhile, in the emerging post Moore era, layered semiconductor materials, such as transition metal dichalcogenides (TMDs), have garnered considerable research interest due to their unique electronic and optoelectronic properties, which hold great promise for powering the new era of next generation electronics. As a result, techniques for engineering the properties of layered semiconductors have expanded the possibilities of layered semiconductor-based devices. However, there remain significant limitations in the synthesis and engineering of layered semiconductors, impeding the utilization of layered semiconductor-based devices for mass applications. As a practical alternative, heterogeneous integration between layered and traditional semiconductors provides valuable opportunities to combine the distinctive properties of layered semiconductors with well-developed traditional semiconductors materials system. Here, we provide an overview of the comparative coherence between layered and traditional semiconductors, starting with TMDs as the representation of layered semiconductors. We highlight the meaningful opportunities presented by the heterogeneous integration of layered semiconductors with traditional semiconductors, representing an optimal strategy poised to propel the emerging semiconductor research community and chip industry towards unprecedented advancements in the coming decades.","PeriodicalId":52353,"journal":{"name":"International Journal of Extreme Manufacturing","volume":"09 1","pages":""},"PeriodicalIF":16.1000,"publicationDate":"2023-07-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Comparative coherence between layered and traditional semiconductors: unique opportunities for heterogeneous integration\",\"authors\":\"Zhuofan Chen, Xiaonan Deng, Simian Zhang, Yuqi Wang, Yifei Wu, Shengxian Ke, Junshang Zhang, Fucheng Liu, Jianing Liu, Yingjie Liu, Yuchun Lin, A. Hanna, Zhengcao Li, Chen Wang\",\"doi\":\"10.1088/2631-7990/ace501\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"As Moore’s law deteriorates, the research and development of new materials system are crucial for transitioning into the post Moore era. Traditional semiconductor materials, such as silicon, have served as the cornerstone of modern technologies for over half a century. This has been due to extensive research and engineering on new techniques to continuously enrich silicon-based materials system and, subsequently, to develop better performed silicon-based devices. Meanwhile, in the emerging post Moore era, layered semiconductor materials, such as transition metal dichalcogenides (TMDs), have garnered considerable research interest due to their unique electronic and optoelectronic properties, which hold great promise for powering the new era of next generation electronics. As a result, techniques for engineering the properties of layered semiconductors have expanded the possibilities of layered semiconductor-based devices. However, there remain significant limitations in the synthesis and engineering of layered semiconductors, impeding the utilization of layered semiconductor-based devices for mass applications. As a practical alternative, heterogeneous integration between layered and traditional semiconductors provides valuable opportunities to combine the distinctive properties of layered semiconductors with well-developed traditional semiconductors materials system. Here, we provide an overview of the comparative coherence between layered and traditional semiconductors, starting with TMDs as the representation of layered semiconductors. We highlight the meaningful opportunities presented by the heterogeneous integration of layered semiconductors with traditional semiconductors, representing an optimal strategy poised to propel the emerging semiconductor research community and chip industry towards unprecedented advancements in the coming decades.\",\"PeriodicalId\":52353,\"journal\":{\"name\":\"International Journal of Extreme Manufacturing\",\"volume\":\"09 1\",\"pages\":\"\"},\"PeriodicalIF\":16.1000,\"publicationDate\":\"2023-07-06\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"International Journal of Extreme Manufacturing\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://doi.org/10.1088/2631-7990/ace501\",\"RegionNum\":1,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"ENGINEERING, MANUFACTURING\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Extreme Manufacturing","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1088/2631-7990/ace501","RegionNum":1,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENGINEERING, MANUFACTURING","Score":null,"Total":0}
引用次数: 0

摘要

随着摩尔定律的恶化,新材料体系的研究与开发对于过渡到后摩尔时代至关重要。半个多世纪以来,硅等传统半导体材料一直是现代技术的基石。这是由于对新技术的广泛研究和工程设计,不断丰富硅基材料体系,并随后开发出性能更好的硅基器件。与此同时,在新兴的后摩尔时代,层状半导体材料,如过渡金属二硫族化合物(TMDs),由于其独特的电子和光电子特性而获得了相当大的研究兴趣,为下一代电子产品的新时代提供了巨大的希望。因此,层状半导体特性工程技术扩大了层状半导体器件的可能性。然而,在层状半导体的合成和工程上仍然存在很大的局限性,阻碍了层状半导体器件的大规模应用。作为一种实用的替代方案,层状半导体与传统半导体之间的异质集成为层状半导体的独特特性与发达的传统半导体材料体系相结合提供了宝贵的机会。在这里,我们提供了层状半导体和传统半导体之间的比较相干性的概述,从tmd作为层状半导体的表示开始。我们强调了层状半导体与传统半导体的异质集成所带来的有意义的机会,代表了一种最佳策略,可以推动新兴的半导体研究界和芯片行业在未来几十年取得前所未有的进步。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Comparative coherence between layered and traditional semiconductors: unique opportunities for heterogeneous integration
As Moore’s law deteriorates, the research and development of new materials system are crucial for transitioning into the post Moore era. Traditional semiconductor materials, such as silicon, have served as the cornerstone of modern technologies for over half a century. This has been due to extensive research and engineering on new techniques to continuously enrich silicon-based materials system and, subsequently, to develop better performed silicon-based devices. Meanwhile, in the emerging post Moore era, layered semiconductor materials, such as transition metal dichalcogenides (TMDs), have garnered considerable research interest due to their unique electronic and optoelectronic properties, which hold great promise for powering the new era of next generation electronics. As a result, techniques for engineering the properties of layered semiconductors have expanded the possibilities of layered semiconductor-based devices. However, there remain significant limitations in the synthesis and engineering of layered semiconductors, impeding the utilization of layered semiconductor-based devices for mass applications. As a practical alternative, heterogeneous integration between layered and traditional semiconductors provides valuable opportunities to combine the distinctive properties of layered semiconductors with well-developed traditional semiconductors materials system. Here, we provide an overview of the comparative coherence between layered and traditional semiconductors, starting with TMDs as the representation of layered semiconductors. We highlight the meaningful opportunities presented by the heterogeneous integration of layered semiconductors with traditional semiconductors, representing an optimal strategy poised to propel the emerging semiconductor research community and chip industry towards unprecedented advancements in the coming decades.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
International Journal of Extreme Manufacturing
International Journal of Extreme Manufacturing Engineering-Industrial and Manufacturing Engineering
CiteScore
17.70
自引率
6.10%
发文量
83
审稿时长
12 weeks
期刊介绍: The International Journal of Extreme Manufacturing (IJEM) focuses on publishing original articles and reviews related to the science and technology of manufacturing functional devices and systems with extreme dimensions and/or extreme functionalities. The journal covers a wide range of topics, from fundamental science to cutting-edge technologies that push the boundaries of currently known theories, methods, scales, environments, and performance. Extreme manufacturing encompasses various aspects such as manufacturing with extremely high energy density, ultrahigh precision, extremely small spatial and temporal scales, extremely intensive fields, and giant systems with extreme complexity and several factors. It encompasses multiple disciplines, including machinery, materials, optics, physics, chemistry, mechanics, and mathematics. The journal is interested in theories, processes, metrology, characterization, equipment, conditions, and system integration in extreme manufacturing. Additionally, it covers materials, structures, and devices with extreme functionalities.
期刊最新文献
Advancements in 3D skin bioprinting: processes, bioinks, applications and sensor integration. Additively manufactured Ti-Ta-Cu alloys for the next-generation load-bearing implants. A novel approach of jet polishing for interior surface of small grooved components using three developed setups Elliptical vibration chiseling: a novel process for texturing ultra-high-aspect-ratio microstructures on the metallic surface Printability disparities in heterogeneous material combinations via laser directed energy deposition: a comparative study
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1