利用带隙工程改进高速开关石墨烯晶体管

IF 0.8 4区 材料科学 Q4 MATERIALS SCIENCE, MULTIDISCIPLINARY Journal of Nano Research Pub Date : 2022-03-21 DOI:10.4028/p-b3jg3k
A. Benfdila
{"title":"利用带隙工程改进高速开关石墨烯晶体管","authors":"A. Benfdila","doi":"10.4028/p-b3jg3k","DOIUrl":null,"url":null,"abstract":"Graphene transistors are considered to be the successors’ of MOS transistors for the next generation of advanced integrated circuits. However, graphene suffers from the absence of energy band gap to experience a semiconductor like characteristics. In order to instigate a bandgap in graphene, several techniques and methods are introduced to beak its symmetry. The most common graphene form is the Graphene Nanoribbon (GNR) sheets. Few techniques have been used to grow GNR sheets. However, the main methods that gave better results are bottom-up techniques mainly based on nanotechnology principles. The present paper deals with the investigation of the bandgap engineering approach targeting an increase in graphene transistors switching characteristics leading to higher maximum frequencies applications. The GNR sheets are synthesized using bottom-up CVD based techniques yielding controlled electronics and physical characteristics. Results obtained on few GNR transistor samples compared to other forms of transistors showed good agreements and found to be close to that of standard silicon devices. Moreover, the GNRFETs frequency response is directly related to the bandgap of the material. It has been evidenced that gap modulation modulates the transistor frequency response. Whereas using other techniques, this cannot be achieved. We have found that small values of gap (100-300 meV) led to high mobility and frequencies of thousands of GHz. However, the edge quality limits the maximum frequencies as it induces traps in the graphene generated gap.","PeriodicalId":16525,"journal":{"name":"Journal of Nano Research","volume":"44 1","pages":"113 - 122"},"PeriodicalIF":0.8000,"publicationDate":"2022-03-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Improving High Speed Switching Graphene Transistors Using Bandgap Engineering\",\"authors\":\"A. Benfdila\",\"doi\":\"10.4028/p-b3jg3k\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Graphene transistors are considered to be the successors’ of MOS transistors for the next generation of advanced integrated circuits. However, graphene suffers from the absence of energy band gap to experience a semiconductor like characteristics. In order to instigate a bandgap in graphene, several techniques and methods are introduced to beak its symmetry. The most common graphene form is the Graphene Nanoribbon (GNR) sheets. Few techniques have been used to grow GNR sheets. However, the main methods that gave better results are bottom-up techniques mainly based on nanotechnology principles. The present paper deals with the investigation of the bandgap engineering approach targeting an increase in graphene transistors switching characteristics leading to higher maximum frequencies applications. The GNR sheets are synthesized using bottom-up CVD based techniques yielding controlled electronics and physical characteristics. Results obtained on few GNR transistor samples compared to other forms of transistors showed good agreements and found to be close to that of standard silicon devices. Moreover, the GNRFETs frequency response is directly related to the bandgap of the material. It has been evidenced that gap modulation modulates the transistor frequency response. Whereas using other techniques, this cannot be achieved. We have found that small values of gap (100-300 meV) led to high mobility and frequencies of thousands of GHz. However, the edge quality limits the maximum frequencies as it induces traps in the graphene generated gap.\",\"PeriodicalId\":16525,\"journal\":{\"name\":\"Journal of Nano Research\",\"volume\":\"44 1\",\"pages\":\"113 - 122\"},\"PeriodicalIF\":0.8000,\"publicationDate\":\"2022-03-21\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Nano Research\",\"FirstCategoryId\":\"88\",\"ListUrlMain\":\"https://doi.org/10.4028/p-b3jg3k\",\"RegionNum\":4,\"RegionCategory\":\"材料科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"MATERIALS SCIENCE, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Nano Research","FirstCategoryId":"88","ListUrlMain":"https://doi.org/10.4028/p-b3jg3k","RegionNum":4,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"MATERIALS SCIENCE, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

摘要

石墨烯晶体管被认为是下一代先进集成电路的MOS晶体管的接班人。然而,石墨烯的缺点是缺乏能带隙,无法体验到类似半导体的特性。为了激发石墨烯中的带隙,介绍了几种技术和方法来获得其对称性。最常见的石墨烯形式是石墨烯纳米带(GNR)片。很少有技术用于生长GNR片材。然而,提供更好结果的主要方法是主要基于纳米技术原理的自下而上的技术。本文研究了带隙工程方法,旨在提高石墨烯晶体管的开关特性,从而实现更高的最大频率应用。采用自下而上的CVD技术合成了GNR片材,产生了可控的电子和物理特性。与其他形式的晶体管相比,在少数GNR晶体管样品上获得的结果显示出良好的一致性,并发现接近标准硅器件的结果。此外,gnrfet的频率响应与材料的带隙直接相关。已经证明,间隙调制调制晶体管的频率响应。而使用其他技术,这是无法实现的。我们发现小的间隙值(100-300 meV)导致高迁移率和数千GHz的频率。然而,边缘质量限制了最大频率,因为它会在石墨烯生成的间隙中诱导陷阱。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Improving High Speed Switching Graphene Transistors Using Bandgap Engineering
Graphene transistors are considered to be the successors’ of MOS transistors for the next generation of advanced integrated circuits. However, graphene suffers from the absence of energy band gap to experience a semiconductor like characteristics. In order to instigate a bandgap in graphene, several techniques and methods are introduced to beak its symmetry. The most common graphene form is the Graphene Nanoribbon (GNR) sheets. Few techniques have been used to grow GNR sheets. However, the main methods that gave better results are bottom-up techniques mainly based on nanotechnology principles. The present paper deals with the investigation of the bandgap engineering approach targeting an increase in graphene transistors switching characteristics leading to higher maximum frequencies applications. The GNR sheets are synthesized using bottom-up CVD based techniques yielding controlled electronics and physical characteristics. Results obtained on few GNR transistor samples compared to other forms of transistors showed good agreements and found to be close to that of standard silicon devices. Moreover, the GNRFETs frequency response is directly related to the bandgap of the material. It has been evidenced that gap modulation modulates the transistor frequency response. Whereas using other techniques, this cannot be achieved. We have found that small values of gap (100-300 meV) led to high mobility and frequencies of thousands of GHz. However, the edge quality limits the maximum frequencies as it induces traps in the graphene generated gap.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Journal of Nano Research
Journal of Nano Research 工程技术-材料科学:综合
CiteScore
2.40
自引率
5.90%
发文量
55
审稿时长
4 months
期刊介绍: "Journal of Nano Research" (JNanoR) is a multidisciplinary journal, which publishes high quality scientific and engineering papers on all aspects of research in the area of nanoscience and nanotechnologies and wide practical application of achieved results. "Journal of Nano Research" is one of the largest periodicals in the field of nanoscience and nanotechnologies. All papers are peer-reviewed and edited. Authors retain the right to publish an extended and significantly updated version in another periodical.
期刊最新文献
Mean Field Study of a Cylindrical Ferrimagnetic Nanotube with Different Anisotropies The Influence of Reaction Medium pH on the Structure, Optical, and Mechanical Properties of Nanosized Cu-Fe Ferrite Synthesized by the Sol-Gel Autocombustion Method Fabrication and Characterization of Eco-Friendly Polystyrene Based Zinc Oxide-Graphite (PS/ZnO-G) Hierarchical CoP@NiMn-P Nanocomposites Grown on Carbon Cloth for High-Performance Supercapacitor Electrodes High-Transconductance and Low-Leakage Current Single Aluminum Nitride Nanowire Field Effect Transistor
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1