数据科学中的偏斜分布

N. Dasgupta
{"title":"数据科学中的偏斜分布","authors":"N. Dasgupta","doi":"10.1080/09332480.2022.2039034","DOIUrl":null,"url":null,"abstract":"This column is about raising questions, rather than providing answers. These days “data based decision making” is the rage among administrators in both industry and academia. The desire for this dependence on algorithms stems from the general idea that “humans are biased but machines are not”. More and more social decisions, like qualifying for welfare are, are made using algorithms. With this, the data scientists, who are behind the algorithms, are given a lot of power (and responsibility.) In this column, I discuss demographic characteristics of data scientists with conjectures on why this group is non-diverse. Should we allow a small group of non-representative people to make decisions that affect affect larger society?","PeriodicalId":88226,"journal":{"name":"Chance (New York, N.Y.)","volume":"22 1","pages":"51 - 55"},"PeriodicalIF":0.0000,"publicationDate":"2022-01-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":"{\"title\":\"Skewed Distributions in Data Science\",\"authors\":\"N. Dasgupta\",\"doi\":\"10.1080/09332480.2022.2039034\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This column is about raising questions, rather than providing answers. These days “data based decision making” is the rage among administrators in both industry and academia. The desire for this dependence on algorithms stems from the general idea that “humans are biased but machines are not”. More and more social decisions, like qualifying for welfare are, are made using algorithms. With this, the data scientists, who are behind the algorithms, are given a lot of power (and responsibility.) In this column, I discuss demographic characteristics of data scientists with conjectures on why this group is non-diverse. Should we allow a small group of non-representative people to make decisions that affect affect larger society?\",\"PeriodicalId\":88226,\"journal\":{\"name\":\"Chance (New York, N.Y.)\",\"volume\":\"22 1\",\"pages\":\"51 - 55\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2022-01-02\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"2\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Chance (New York, N.Y.)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1080/09332480.2022.2039034\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Chance (New York, N.Y.)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1080/09332480.2022.2039034","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 2

摘要

本专栏旨在提出问题,而不是提供答案。如今,“基于数据的决策”在工业界和学术界的管理人员中都很流行。这种对算法的依赖源于“人类有偏见,但机器没有”的普遍观点。越来越多的社会决策,比如获得福利的资格,都是用算法做出的。这样,算法背后的数据科学家就被赋予了很大的权力(和责任)。在本专栏中,我将讨论数据科学家的人口统计学特征,并推测为什么这个群体没有多样性。我们应该允许一小群没有代表性的人做出影响整个社会的决定吗?
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Skewed Distributions in Data Science
This column is about raising questions, rather than providing answers. These days “data based decision making” is the rage among administrators in both industry and academia. The desire for this dependence on algorithms stems from the general idea that “humans are biased but machines are not”. More and more social decisions, like qualifying for welfare are, are made using algorithms. With this, the data scientists, who are behind the algorithms, are given a lot of power (and responsibility.) In this column, I discuss demographic characteristics of data scientists with conjectures on why this group is non-diverse. Should we allow a small group of non-representative people to make decisions that affect affect larger society?
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Multiple discoveries in causal inference: LATE for the party. Bayes Factors for Forensic Decision Analyses with R Three Welcome Arrivals for 2023: 1. Florence Nightingale Bayesian Probability for Babies Fresh Perspective
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1