{"title":"基于稀疏贝叶斯学习的MIMO雷达动态波形DOA估计","authors":"Bingfan Liu, Baixiao Chen, Minglei Yang, Hui Xu","doi":"10.1109/SAM48682.2020.9104248","DOIUrl":null,"url":null,"abstract":"In this paper, we proposed a direction of arrival (DOA) estimation method based on sparse Bayesian learning (SBL) and a dynamic transmitted waveform design method for colocated multiple-input multiple-output (MIMO) radar. First, the SBL DOA estimation method is introduced into the MIMO radar with arbitrary transmitted waveforms. Our theoretical derivation shows that the estimation error of the SBL method is related to the transmitted waveforms. Then, we minimize the estimation error to obtain an updated transmitted waveforms, which will be transmitted in the next pulse repetition period. Numerical simulations show that compared with traditional orthogonal waveforms, the optimized waveforms could achieve a lower Cramér-Rao bound (CRB) and smaller DOA estimation error using the SBL method.","PeriodicalId":6753,"journal":{"name":"2020 IEEE 11th Sensor Array and Multichannel Signal Processing Workshop (SAM)","volume":"14 1","pages":"1-4"},"PeriodicalIF":0.0000,"publicationDate":"2020-06-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"DOA estimation using sparse Bayesian learning for colocated MIMO radar with dynamic waveforms\",\"authors\":\"Bingfan Liu, Baixiao Chen, Minglei Yang, Hui Xu\",\"doi\":\"10.1109/SAM48682.2020.9104248\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In this paper, we proposed a direction of arrival (DOA) estimation method based on sparse Bayesian learning (SBL) and a dynamic transmitted waveform design method for colocated multiple-input multiple-output (MIMO) radar. First, the SBL DOA estimation method is introduced into the MIMO radar with arbitrary transmitted waveforms. Our theoretical derivation shows that the estimation error of the SBL method is related to the transmitted waveforms. Then, we minimize the estimation error to obtain an updated transmitted waveforms, which will be transmitted in the next pulse repetition period. Numerical simulations show that compared with traditional orthogonal waveforms, the optimized waveforms could achieve a lower Cramér-Rao bound (CRB) and smaller DOA estimation error using the SBL method.\",\"PeriodicalId\":6753,\"journal\":{\"name\":\"2020 IEEE 11th Sensor Array and Multichannel Signal Processing Workshop (SAM)\",\"volume\":\"14 1\",\"pages\":\"1-4\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2020-06-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2020 IEEE 11th Sensor Array and Multichannel Signal Processing Workshop (SAM)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/SAM48682.2020.9104248\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2020 IEEE 11th Sensor Array and Multichannel Signal Processing Workshop (SAM)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/SAM48682.2020.9104248","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
DOA estimation using sparse Bayesian learning for colocated MIMO radar with dynamic waveforms
In this paper, we proposed a direction of arrival (DOA) estimation method based on sparse Bayesian learning (SBL) and a dynamic transmitted waveform design method for colocated multiple-input multiple-output (MIMO) radar. First, the SBL DOA estimation method is introduced into the MIMO radar with arbitrary transmitted waveforms. Our theoretical derivation shows that the estimation error of the SBL method is related to the transmitted waveforms. Then, we minimize the estimation error to obtain an updated transmitted waveforms, which will be transmitted in the next pulse repetition period. Numerical simulations show that compared with traditional orthogonal waveforms, the optimized waveforms could achieve a lower Cramér-Rao bound (CRB) and smaller DOA estimation error using the SBL method.