粒子跟踪探测器用微流控硅冷却装置

G. Romagnoli, J. Buytaert, R. Dumps, A. Francescon, O. A. de Aguiar Francisco, K. Howell, A. Mapelli, G. Nuessle, P. Petagna
{"title":"粒子跟踪探测器用微流控硅冷却装置","authors":"G. Romagnoli, J. Buytaert, R. Dumps, A. Francescon, O. A. de Aguiar Francisco, K. Howell, A. Mapelli, G. Nuessle, P. Petagna","doi":"10.1109/ITHERM.2014.6892344","DOIUrl":null,"url":null,"abstract":"In the last years the Detector Technology group (PH-DT) [1] of the CERN Physics Department in Geneva, Switzerland, has started the study of novel micro-fluidic cooling systems obtained through standard micro-fabrication processes that outperform traditional cooling approaches for the thermal management of silicon particle detectors. The fabrication of the cooling devices starts with the etching of the microchannels in a silicon wafer; the channels are then closed with another silicon wafer through a direct bonding process. The devices are then interfaced to the front-end electronics of the detector via a thin adhesive layer. Silicon cooling devices with thickness of the order of few hundred microns guarantee the desired minimization of material in front of the tracking sensors and eliminate mechanical stresses due to the mismatch of Coefficient of Thermal Expansion (CTE) between the sensor and its related electronics. Combining the versatility of standard micro-fabrication processes with the high thermal efficiency typical of micro-fluidics, it is possible to produce effective thermal management devices that are well adapted to very different detector configurations.","PeriodicalId":12453,"journal":{"name":"Fourteenth Intersociety Conference on Thermal and Thermomechanical Phenomena in Electronic Systems (ITherm)","volume":"40 1","pages":"658-665"},"PeriodicalIF":0.0000,"publicationDate":"2014-09-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Micro-fluidic silicon cooling devices for particle tracking detectors\",\"authors\":\"G. Romagnoli, J. Buytaert, R. Dumps, A. Francescon, O. A. de Aguiar Francisco, K. Howell, A. Mapelli, G. Nuessle, P. Petagna\",\"doi\":\"10.1109/ITHERM.2014.6892344\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In the last years the Detector Technology group (PH-DT) [1] of the CERN Physics Department in Geneva, Switzerland, has started the study of novel micro-fluidic cooling systems obtained through standard micro-fabrication processes that outperform traditional cooling approaches for the thermal management of silicon particle detectors. The fabrication of the cooling devices starts with the etching of the microchannels in a silicon wafer; the channels are then closed with another silicon wafer through a direct bonding process. The devices are then interfaced to the front-end electronics of the detector via a thin adhesive layer. Silicon cooling devices with thickness of the order of few hundred microns guarantee the desired minimization of material in front of the tracking sensors and eliminate mechanical stresses due to the mismatch of Coefficient of Thermal Expansion (CTE) between the sensor and its related electronics. Combining the versatility of standard micro-fabrication processes with the high thermal efficiency typical of micro-fluidics, it is possible to produce effective thermal management devices that are well adapted to very different detector configurations.\",\"PeriodicalId\":12453,\"journal\":{\"name\":\"Fourteenth Intersociety Conference on Thermal and Thermomechanical Phenomena in Electronic Systems (ITherm)\",\"volume\":\"40 1\",\"pages\":\"658-665\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2014-09-08\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Fourteenth Intersociety Conference on Thermal and Thermomechanical Phenomena in Electronic Systems (ITherm)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ITHERM.2014.6892344\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Fourteenth Intersociety Conference on Thermal and Thermomechanical Phenomena in Electronic Systems (ITherm)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ITHERM.2014.6892344","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

在过去的几年里,位于瑞士日内瓦的欧洲核子研究中心物理部的探测器技术小组(PH-DT)[1]已经开始研究通过标准微制造工艺获得的新型微流体冷却系统,该系统在硅粒子探测器的热管理方面优于传统的冷却方法。所述冷却装置的制造首先在硅片上蚀刻所述微通道;然后通过直接键合过程将通道与另一片硅片闭合。然后,这些设备通过一层薄薄的粘合剂连接到探测器的前端电子设备上。厚度为几百微米的硅冷却装置保证了跟踪传感器前材料的最小化,并消除了由于传感器与其相关电子器件之间热膨胀系数(CTE)不匹配而引起的机械应力。将标准微加工工艺的多功能性与微流体的高热效率相结合,可以生产出适用于非常不同的探测器配置的有效热管理设备。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Micro-fluidic silicon cooling devices for particle tracking detectors
In the last years the Detector Technology group (PH-DT) [1] of the CERN Physics Department in Geneva, Switzerland, has started the study of novel micro-fluidic cooling systems obtained through standard micro-fabrication processes that outperform traditional cooling approaches for the thermal management of silicon particle detectors. The fabrication of the cooling devices starts with the etching of the microchannels in a silicon wafer; the channels are then closed with another silicon wafer through a direct bonding process. The devices are then interfaced to the front-end electronics of the detector via a thin adhesive layer. Silicon cooling devices with thickness of the order of few hundred microns guarantee the desired minimization of material in front of the tracking sensors and eliminate mechanical stresses due to the mismatch of Coefficient of Thermal Expansion (CTE) between the sensor and its related electronics. Combining the versatility of standard micro-fabrication processes with the high thermal efficiency typical of micro-fluidics, it is possible to produce effective thermal management devices that are well adapted to very different detector configurations.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Material behavior of SAC305 under high strain rate at high temperature Phase-separation of wetting fluids using nanoporous alumina membranes and micro-glass capillaries Nature-inspired enhanced microscale heat transfer in macro geometry Transient thermal imaging characterization of a die attached optoelectronic device on silicon A model for the free (top) surface deformation of through-silicon vias
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1