{"title":"根据核DNA序列推断的檀香及其掺假物的系统发育关系","authors":"Anupama Chembath, M. Balasundaran, P. Sujanapal","doi":"10.5923/J.IJAF.20120204.03","DOIUrl":null,"url":null,"abstract":"The East Indian sandalwood, Santalum album, valued for its fragrant oil yielding heartwood is a major ingre- dient in indigenous medicines and perfumes. Scarcity of sandal has led to illegal felling of sandal trees, and adulteration of sandalwood and oil. This study represents the first molecular phylogeny of S. album and its adulterant species Osyris wightiana, Erythroxylum monogynum, Buxus sempervirens, Ximenia americana, Osyris lanceolata, and Chukrasia tabularis through 18S and 26S rDNA sequencing. In the Maximum Parsimony (MP) tree for 18S and 26S rDNA data sets, moderate to high bootstrap support was obtained for the nodes. For 18S rDNA data sets, the tree had B. sempervirens and X. Americana as the upper branch, with E. monogynum branched separately to the cluster. The lower branch had S. album and O. wightiana with O. lanceolata joining separately to both clades of the tree. In the MP tree for 26S rDNA datasets, S. album and O. wightiana formed the major cluster with X. americana clustering separate and B. sempervirens and O. wightiana as the lower branch with C. tabularis clustering separate to the tree. The molecular data presented here provided useful information for resolving the phylogenetic relationship of these plants. Inferences from this study are in accordance with Cronquist's system of classification of flowering plants where all the species originate from a single phylogenetic tree of Rosidae.","PeriodicalId":13804,"journal":{"name":"International Journal of Agriculture and Forestry","volume":"2007 1","pages":"150-156"},"PeriodicalIF":0.0000,"publicationDate":"2012-08-31","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"5","resultStr":"{\"title\":\"Phylogenetic Relationships of Santalum album and its Adulterants as Inferred from Nuclear DNA Sequences\",\"authors\":\"Anupama Chembath, M. Balasundaran, P. Sujanapal\",\"doi\":\"10.5923/J.IJAF.20120204.03\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The East Indian sandalwood, Santalum album, valued for its fragrant oil yielding heartwood is a major ingre- dient in indigenous medicines and perfumes. Scarcity of sandal has led to illegal felling of sandal trees, and adulteration of sandalwood and oil. This study represents the first molecular phylogeny of S. album and its adulterant species Osyris wightiana, Erythroxylum monogynum, Buxus sempervirens, Ximenia americana, Osyris lanceolata, and Chukrasia tabularis through 18S and 26S rDNA sequencing. In the Maximum Parsimony (MP) tree for 18S and 26S rDNA data sets, moderate to high bootstrap support was obtained for the nodes. For 18S rDNA data sets, the tree had B. sempervirens and X. Americana as the upper branch, with E. monogynum branched separately to the cluster. The lower branch had S. album and O. wightiana with O. lanceolata joining separately to both clades of the tree. In the MP tree for 26S rDNA datasets, S. album and O. wightiana formed the major cluster with X. americana clustering separate and B. sempervirens and O. wightiana as the lower branch with C. tabularis clustering separate to the tree. The molecular data presented here provided useful information for resolving the phylogenetic relationship of these plants. Inferences from this study are in accordance with Cronquist's system of classification of flowering plants where all the species originate from a single phylogenetic tree of Rosidae.\",\"PeriodicalId\":13804,\"journal\":{\"name\":\"International Journal of Agriculture and Forestry\",\"volume\":\"2007 1\",\"pages\":\"150-156\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2012-08-31\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"5\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"International Journal of Agriculture and Forestry\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.5923/J.IJAF.20120204.03\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Agriculture and Forestry","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.5923/J.IJAF.20120204.03","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Phylogenetic Relationships of Santalum album and its Adulterants as Inferred from Nuclear DNA Sequences
The East Indian sandalwood, Santalum album, valued for its fragrant oil yielding heartwood is a major ingre- dient in indigenous medicines and perfumes. Scarcity of sandal has led to illegal felling of sandal trees, and adulteration of sandalwood and oil. This study represents the first molecular phylogeny of S. album and its adulterant species Osyris wightiana, Erythroxylum monogynum, Buxus sempervirens, Ximenia americana, Osyris lanceolata, and Chukrasia tabularis through 18S and 26S rDNA sequencing. In the Maximum Parsimony (MP) tree for 18S and 26S rDNA data sets, moderate to high bootstrap support was obtained for the nodes. For 18S rDNA data sets, the tree had B. sempervirens and X. Americana as the upper branch, with E. monogynum branched separately to the cluster. The lower branch had S. album and O. wightiana with O. lanceolata joining separately to both clades of the tree. In the MP tree for 26S rDNA datasets, S. album and O. wightiana formed the major cluster with X. americana clustering separate and B. sempervirens and O. wightiana as the lower branch with C. tabularis clustering separate to the tree. The molecular data presented here provided useful information for resolving the phylogenetic relationship of these plants. Inferences from this study are in accordance with Cronquist's system of classification of flowering plants where all the species originate from a single phylogenetic tree of Rosidae.