布基纳法索德杜古市Passakongo村挖井水水文地球化学特征及其对生活供水的适宜性

A. Sako, Sâga Sawadogo, M. Yoni, M. Nimi, Ousseni Zongo, O. Bamba
{"title":"布基纳法索德杜古市Passakongo村挖井水水文地球化学特征及其对生活供水的适宜性","authors":"A. Sako, Sâga Sawadogo, M. Yoni, M. Nimi, Ousseni Zongo, O. Bamba","doi":"10.5539/enrr.v8n3p126","DOIUrl":null,"url":null,"abstract":"Hydrogeochemical characterization and suitability study of dug well water for domestic purpose were carried out in a semi-arid rural village in Burkina Faso. Thirty water samples were collected from 15 wells in dry and wet seasons, 2017. Electrical conductivity (EC) and total dissolved solids as well as major ions of all samples were within the World Health Organization (WHO) permissible limits for drinking water. In contrast, nine wells had pH beyond the WHO limit during the dry season and one well had very high NO3- concentration in the wet season. Most wells were seriously polluted with total Cr (CrT) in both seasons (11 and 14 wells in dry and wet seasons, respectively). Although Pb was not detected in the wells during the dry season, six wells showed Pb concentrations exceeding the WHO guideline limit for drinking water in the wet season. Graphic interpretation, including the Piper diagram, major ion ratios and Na/Cl versus EC, were used to characterize the hydrochemistry and water – rock interaction within the wells. The dominant hydrochemical facies of the wells was Ca-HCO3 during the dry season, reflecting the influence of silicate weathering. Following loadings of agricultural and domestic effluent, the hydrochemical facies shifted to more mixed type during the wet season. All samples had negative chloro-alkaline indices, suggesting retention of Ca2+ and Mg2+ by the aquifer materials and release of Na+ and K+ into the groundwater. In addition to silicate weathering, the hydrochemistry and water quality of the majority of the wells were partially controlled by the evaporation process and longer water–rock interaction in the dry season. In contrast, recharge and dilution effects appeared to alter the natural hydrochemistry of the wells in the wet season. Geochemical characterization has clearly shown that seasonal changes do affect the dug well water quality. The study also demonstrated that, in terms of CrT and Pb, water from the majority of the wells was not suitable for drinking. A special attention should be therefore paid to groundwater quality protection in the","PeriodicalId":11699,"journal":{"name":"Environment and Natural Resources Research","volume":"163 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2018-09-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"4","resultStr":"{\"title\":\"Hydrogeochemical Characterization of Dug Well Water and Its Suitability for Domestic Water Supply in the Village of Passakongo, Dedougou municipality, Burkina Faso\",\"authors\":\"A. Sako, Sâga Sawadogo, M. Yoni, M. Nimi, Ousseni Zongo, O. Bamba\",\"doi\":\"10.5539/enrr.v8n3p126\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Hydrogeochemical characterization and suitability study of dug well water for domestic purpose were carried out in a semi-arid rural village in Burkina Faso. Thirty water samples were collected from 15 wells in dry and wet seasons, 2017. Electrical conductivity (EC) and total dissolved solids as well as major ions of all samples were within the World Health Organization (WHO) permissible limits for drinking water. In contrast, nine wells had pH beyond the WHO limit during the dry season and one well had very high NO3- concentration in the wet season. Most wells were seriously polluted with total Cr (CrT) in both seasons (11 and 14 wells in dry and wet seasons, respectively). Although Pb was not detected in the wells during the dry season, six wells showed Pb concentrations exceeding the WHO guideline limit for drinking water in the wet season. Graphic interpretation, including the Piper diagram, major ion ratios and Na/Cl versus EC, were used to characterize the hydrochemistry and water – rock interaction within the wells. The dominant hydrochemical facies of the wells was Ca-HCO3 during the dry season, reflecting the influence of silicate weathering. Following loadings of agricultural and domestic effluent, the hydrochemical facies shifted to more mixed type during the wet season. All samples had negative chloro-alkaline indices, suggesting retention of Ca2+ and Mg2+ by the aquifer materials and release of Na+ and K+ into the groundwater. In addition to silicate weathering, the hydrochemistry and water quality of the majority of the wells were partially controlled by the evaporation process and longer water–rock interaction in the dry season. In contrast, recharge and dilution effects appeared to alter the natural hydrochemistry of the wells in the wet season. Geochemical characterization has clearly shown that seasonal changes do affect the dug well water quality. The study also demonstrated that, in terms of CrT and Pb, water from the majority of the wells was not suitable for drinking. A special attention should be therefore paid to groundwater quality protection in the\",\"PeriodicalId\":11699,\"journal\":{\"name\":\"Environment and Natural Resources Research\",\"volume\":\"163 1\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2018-09-25\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"4\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Environment and Natural Resources Research\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.5539/enrr.v8n3p126\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Environment and Natural Resources Research","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.5539/enrr.v8n3p126","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 4

摘要

在布基纳法索的一个半干旱农村进行了家庭用井水的水文地球化学特征和适宜性研究。2017年干湿季节共采集15口井30份水样。所有样品的电导率和总溶解固体以及主要离子均在世界卫生组织(世卫组织)允许的饮用水限度之内。旱季有9口井pH值超过WHO标准,雨季有1口井NO3-浓度非常高。大多数井在两个季节都受到严重的总铬污染(干季和湿季分别有11口和14口)。虽然在旱季未检测到铅,但有6口井的铅浓度超过了世卫组织在雨季饮用水的指导限值。图形解释,包括Piper图、主离子比和Na/Cl与EC,用于表征井内的水化学和水岩相互作用。干季井的水化学相以Ca-HCO3为主,反映了硅酸盐风化的影响。随着农业和生活污水的负荷,水化学相在雨季转向更混合的类型。所有样品的氯碱性指数均为负,表明含水层物质保留了Ca2+和Mg2+,并将Na+和K+释放到地下水中。除硅酸盐风化作用外,大部分井的水化学和水质在旱季部分受蒸发过程和较长的水岩相互作用控制。相反,补给和稀释效应似乎改变了井在雨季的天然水化学。地球化学表征清楚地表明,季节变化确实会影响挖井水质。研究还表明,在CrT和Pb方面,大多数井的水不适合饮用。因此,应特别注意保护地下水的水质
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Hydrogeochemical Characterization of Dug Well Water and Its Suitability for Domestic Water Supply in the Village of Passakongo, Dedougou municipality, Burkina Faso
Hydrogeochemical characterization and suitability study of dug well water for domestic purpose were carried out in a semi-arid rural village in Burkina Faso. Thirty water samples were collected from 15 wells in dry and wet seasons, 2017. Electrical conductivity (EC) and total dissolved solids as well as major ions of all samples were within the World Health Organization (WHO) permissible limits for drinking water. In contrast, nine wells had pH beyond the WHO limit during the dry season and one well had very high NO3- concentration in the wet season. Most wells were seriously polluted with total Cr (CrT) in both seasons (11 and 14 wells in dry and wet seasons, respectively). Although Pb was not detected in the wells during the dry season, six wells showed Pb concentrations exceeding the WHO guideline limit for drinking water in the wet season. Graphic interpretation, including the Piper diagram, major ion ratios and Na/Cl versus EC, were used to characterize the hydrochemistry and water – rock interaction within the wells. The dominant hydrochemical facies of the wells was Ca-HCO3 during the dry season, reflecting the influence of silicate weathering. Following loadings of agricultural and domestic effluent, the hydrochemical facies shifted to more mixed type during the wet season. All samples had negative chloro-alkaline indices, suggesting retention of Ca2+ and Mg2+ by the aquifer materials and release of Na+ and K+ into the groundwater. In addition to silicate weathering, the hydrochemistry and water quality of the majority of the wells were partially controlled by the evaporation process and longer water–rock interaction in the dry season. In contrast, recharge and dilution effects appeared to alter the natural hydrochemistry of the wells in the wet season. Geochemical characterization has clearly shown that seasonal changes do affect the dug well water quality. The study also demonstrated that, in terms of CrT and Pb, water from the majority of the wells was not suitable for drinking. A special attention should be therefore paid to groundwater quality protection in the
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Hydrogen Supply Chains Downstream – A Systematic Analysis of The Western U.S. Tackling Environmental Problems: Are People and the Environment Antithetical? Spatiotemporal Dynamic of Land Use/Land Cover Changes and Their Drivers in the Fincha' a-Neshe Sub-Basin, Southeastern Blue Nile Basin, Ethiopia Influence of Different Land Management Systems on the Dynamics of Carbon Biodegradability and Nitrogen Mineralization in a Sudanian Savanah Grasslands Soil, Western Burkina Faso Perception and Resilience Strategies of Livestock Farmers and Agro-Pastoralists Affected by Climate Change: Case of the urban commune of Tera, Niger
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1