基于平方和的鲁棒矩估计和改进聚类

Pravesh Kothari, J. Steinhardt, David Steurer
{"title":"基于平方和的鲁棒矩估计和改进聚类","authors":"Pravesh Kothari, J. Steinhardt, David Steurer","doi":"10.1145/3188745.3188970","DOIUrl":null,"url":null,"abstract":"We develop efficient algorithms for estimating low-degree moments of unknown distributions in the presence of adversarial outliers and design a new family of convex relaxations for k-means clustering based on sum-of-squares method. As an immediate corollary, for any γ > 0, we obtain an efficient algorithm for learning the means of a mixture of k arbitrary distributions in d in time dO(1/γ) so long as the means have separation Ω(kγ). This in particular yields an algorithm for learning Gaussian mixtures with separation Ω(kγ), thus partially resolving an open problem of Regev and Vijayaraghavan regev2017learning. The guarantees of our robust estimation algorithms improve in many cases significantly over the best previous ones, obtained in the recent works. We also show that the guarantees of our algorithms match information-theoretic lower-bounds for the class of distributions we consider. These improved guarantees allow us to give improved algorithms for independent component analysis and learning mixtures of Gaussians in the presence of outliers. We also show a sharp upper bound on the sum-of-squares norms for moment tensors of any distribution that satisfies the Poincare inequality. The Poincare inequality is a central inequality in probability theory, and a large class of distributions satisfy it including Gaussians, product distributions, strongly log-concave distributions, and any sum or uniformly continuous transformation of such distributions. As a consequence, this yields that all of the above algorithmic improvements hold for distributions satisfying the Poincare inequality.","PeriodicalId":20593,"journal":{"name":"Proceedings of the 50th Annual ACM SIGACT Symposium on Theory of Computing","volume":"1 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2018-06-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"130","resultStr":"{\"title\":\"Robust moment estimation and improved clustering via sum of squares\",\"authors\":\"Pravesh Kothari, J. Steinhardt, David Steurer\",\"doi\":\"10.1145/3188745.3188970\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"We develop efficient algorithms for estimating low-degree moments of unknown distributions in the presence of adversarial outliers and design a new family of convex relaxations for k-means clustering based on sum-of-squares method. As an immediate corollary, for any γ > 0, we obtain an efficient algorithm for learning the means of a mixture of k arbitrary distributions in d in time dO(1/γ) so long as the means have separation Ω(kγ). This in particular yields an algorithm for learning Gaussian mixtures with separation Ω(kγ), thus partially resolving an open problem of Regev and Vijayaraghavan regev2017learning. The guarantees of our robust estimation algorithms improve in many cases significantly over the best previous ones, obtained in the recent works. We also show that the guarantees of our algorithms match information-theoretic lower-bounds for the class of distributions we consider. These improved guarantees allow us to give improved algorithms for independent component analysis and learning mixtures of Gaussians in the presence of outliers. We also show a sharp upper bound on the sum-of-squares norms for moment tensors of any distribution that satisfies the Poincare inequality. The Poincare inequality is a central inequality in probability theory, and a large class of distributions satisfy it including Gaussians, product distributions, strongly log-concave distributions, and any sum or uniformly continuous transformation of such distributions. As a consequence, this yields that all of the above algorithmic improvements hold for distributions satisfying the Poincare inequality.\",\"PeriodicalId\":20593,\"journal\":{\"name\":\"Proceedings of the 50th Annual ACM SIGACT Symposium on Theory of Computing\",\"volume\":\"1 1\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2018-06-20\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"130\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Proceedings of the 50th Annual ACM SIGACT Symposium on Theory of Computing\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1145/3188745.3188970\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the 50th Annual ACM SIGACT Symposium on Theory of Computing","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/3188745.3188970","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 130

摘要

我们开发了一种有效的算法来估计存在对抗性异常值的未知分布的低度矩,并设计了一种新的基于平方和方法的k-means聚类凸松弛。作为一个直接的推论,对于任何γ > 0,我们得到了一种有效的算法,可以在dO(1/γ)时间内学习d中k个任意分布的混合均值,只要均值有分离Ω(kγ)。这特别产生了一种用于学习分离Ω(kγ)的高斯混合物的算法,从而部分解决了Regev和Vijayaraghavan regev2017学习的开放问题。在许多情况下,我们的鲁棒估计算法的保证比最近的研究中获得的最好的估计算法有了显著的提高。我们还证明了我们算法的保证与我们所考虑的分布类的信息论下界相匹配。这些改进的保证使我们能够在异常值存在的情况下给出独立分量分析和学习高斯混合的改进算法。我们还给出了满足庞加莱不等式的任何分布的矩张量的平方和范数的一个明显的上界。庞加莱不等式是概率论中的一个中心不等式,有一大批分布满足它,包括高斯分布、乘积分布、强对数凹分布以及这些分布的和或一致连续变换。因此,上述所有算法改进都适用于满足庞加莱不等式的分布。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Robust moment estimation and improved clustering via sum of squares
We develop efficient algorithms for estimating low-degree moments of unknown distributions in the presence of adversarial outliers and design a new family of convex relaxations for k-means clustering based on sum-of-squares method. As an immediate corollary, for any γ > 0, we obtain an efficient algorithm for learning the means of a mixture of k arbitrary distributions in d in time dO(1/γ) so long as the means have separation Ω(kγ). This in particular yields an algorithm for learning Gaussian mixtures with separation Ω(kγ), thus partially resolving an open problem of Regev and Vijayaraghavan regev2017learning. The guarantees of our robust estimation algorithms improve in many cases significantly over the best previous ones, obtained in the recent works. We also show that the guarantees of our algorithms match information-theoretic lower-bounds for the class of distributions we consider. These improved guarantees allow us to give improved algorithms for independent component analysis and learning mixtures of Gaussians in the presence of outliers. We also show a sharp upper bound on the sum-of-squares norms for moment tensors of any distribution that satisfies the Poincare inequality. The Poincare inequality is a central inequality in probability theory, and a large class of distributions satisfy it including Gaussians, product distributions, strongly log-concave distributions, and any sum or uniformly continuous transformation of such distributions. As a consequence, this yields that all of the above algorithmic improvements hold for distributions satisfying the Poincare inequality.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Data-dependent hashing via nonlinear spectral gaps Interactive compression to external information The query complexity of graph isomorphism: bypassing distribution testing lower bounds Collusion resistant traitor tracing from learning with errors Explicit binary tree codes with polylogarithmic size alphabet
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1