了解原子分散负载金属催化剂:活性位点的结构和性能

Q1 Materials Science Catalysis Structure & Reactivity Pub Date : 2019-02-12 DOI:10.1039/9781788016971-00166
I. Ogino
{"title":"了解原子分散负载金属催化剂:活性位点的结构和性能","authors":"I. Ogino","doi":"10.1039/9781788016971-00166","DOIUrl":null,"url":null,"abstract":"Metal–support interface often plays dominant roles in supported catalysts. When supported metals are extremely small and consist of single or a few atoms, the effects of metal–support interface are maximized. In such atomically dispersed supported metal catalysts, supports act as ligands and influence the metal–adsorbate and metal–metal interactions significantly. As a result, the structure of supported metal species varies dynamically in response to changes in reaction conditions. Because supported metal species are extremely small, often non-uniform in structure and their structures change dynamically, it is challenging to elucidate the structure–performance relationships of such catalysts. However, efforts to improve precise synthesis methods, atomistic characterization techniques, and theoretical calculations have provided crucial fundamental insights into the structure of active sites, roles of ligands, and effects of neighboring metal atoms. This chapter shows some of the research works aimed to deepen fundamental understanding of the structure–performance relationships of atomically dispersed supported metal catalysts. In addition, to illustrate the importance of such catalysts and prospective opportunities for new catalytic technology that are potentially enabled by them, some recent research works are described.","PeriodicalId":43717,"journal":{"name":"Catalysis Structure & Reactivity","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2019-02-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Understanding atomically dispersed supported metal catalysts: structure and performance of active sites\",\"authors\":\"I. Ogino\",\"doi\":\"10.1039/9781788016971-00166\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Metal–support interface often plays dominant roles in supported catalysts. When supported metals are extremely small and consist of single or a few atoms, the effects of metal–support interface are maximized. In such atomically dispersed supported metal catalysts, supports act as ligands and influence the metal–adsorbate and metal–metal interactions significantly. As a result, the structure of supported metal species varies dynamically in response to changes in reaction conditions. Because supported metal species are extremely small, often non-uniform in structure and their structures change dynamically, it is challenging to elucidate the structure–performance relationships of such catalysts. However, efforts to improve precise synthesis methods, atomistic characterization techniques, and theoretical calculations have provided crucial fundamental insights into the structure of active sites, roles of ligands, and effects of neighboring metal atoms. This chapter shows some of the research works aimed to deepen fundamental understanding of the structure–performance relationships of atomically dispersed supported metal catalysts. In addition, to illustrate the importance of such catalysts and prospective opportunities for new catalytic technology that are potentially enabled by them, some recent research works are described.\",\"PeriodicalId\":43717,\"journal\":{\"name\":\"Catalysis Structure & Reactivity\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2019-02-12\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Catalysis Structure & Reactivity\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1039/9781788016971-00166\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"Materials Science\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Catalysis Structure & Reactivity","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1039/9781788016971-00166","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"Materials Science","Score":null,"Total":0}
引用次数: 1

摘要

金属支撑界面在负载型催化剂中起主导作用。当支撑金属非常小且由单个或几个原子组成时,金属-支撑界面的作用最大。在这种原子分散的负载型金属催化剂中,载体作为配体,显著影响金属-吸附物和金属-金属相互作用。因此,负载金属的结构随反应条件的变化而动态变化。由于负载的金属种类非常小,结构往往不均匀,并且它们的结构是动态变化的,因此阐明这类催化剂的结构-性能关系具有挑战性。然而,努力改进精确的合成方法,原子表征技术和理论计算,为活性位点的结构,配体的作用和邻近金属原子的作用提供了至关重要的基本见解。本章展示了一些旨在加深对原子分散负载金属催化剂结构-性能关系的基本理解的研究工作。此外,为了说明这些催化剂的重要性和潜在的新催化技术的潜在机会,介绍了一些最近的研究工作。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Understanding atomically dispersed supported metal catalysts: structure and performance of active sites
Metal–support interface often plays dominant roles in supported catalysts. When supported metals are extremely small and consist of single or a few atoms, the effects of metal–support interface are maximized. In such atomically dispersed supported metal catalysts, supports act as ligands and influence the metal–adsorbate and metal–metal interactions significantly. As a result, the structure of supported metal species varies dynamically in response to changes in reaction conditions. Because supported metal species are extremely small, often non-uniform in structure and their structures change dynamically, it is challenging to elucidate the structure–performance relationships of such catalysts. However, efforts to improve precise synthesis methods, atomistic characterization techniques, and theoretical calculations have provided crucial fundamental insights into the structure of active sites, roles of ligands, and effects of neighboring metal atoms. This chapter shows some of the research works aimed to deepen fundamental understanding of the structure–performance relationships of atomically dispersed supported metal catalysts. In addition, to illustrate the importance of such catalysts and prospective opportunities for new catalytic technology that are potentially enabled by them, some recent research works are described.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Catalysis Structure & Reactivity
Catalysis Structure & Reactivity CHEMISTRY, PHYSICAL-
CiteScore
4.80
自引率
0.00%
发文量
0
期刊最新文献
Plasmonic photocatalysis Electrocatalysts Catalysis Catalysis Direct non-oxidative methane conversion in membrane reactor
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1