模型选择后小面积估计的统一蒙特卡罗折刀

Jiming Jiang, P. Lahiri, Thuan Nguyen
{"title":"模型选择后小面积估计的统一蒙特卡罗折刀","authors":"Jiming Jiang, P. Lahiri, Thuan Nguyen","doi":"10.4310/AMSA.2018.V3.N2.A2","DOIUrl":null,"url":null,"abstract":"We consider estimation of measure of uncertainty in small area estimation (SAE) when a procedure of model selection is involved prior to the estimation. A unified Monte-Carlo jackknife method, called McJack, is proposed for estimating the logarithm of the mean squared prediction error. We prove the second-order unbiasedness of McJack, and demonstrate the performance of McJack in assessing uncertainty in SAE after model selection through empirical investigations that include simulation studies and real-data analyses.","PeriodicalId":8446,"journal":{"name":"arXiv: Computation","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2016-02-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"18","resultStr":"{\"title\":\"A Unified Monte-Carlo Jackknife for Small Area Estimation after Model Selection\",\"authors\":\"Jiming Jiang, P. Lahiri, Thuan Nguyen\",\"doi\":\"10.4310/AMSA.2018.V3.N2.A2\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"We consider estimation of measure of uncertainty in small area estimation (SAE) when a procedure of model selection is involved prior to the estimation. A unified Monte-Carlo jackknife method, called McJack, is proposed for estimating the logarithm of the mean squared prediction error. We prove the second-order unbiasedness of McJack, and demonstrate the performance of McJack in assessing uncertainty in SAE after model selection through empirical investigations that include simulation studies and real-data analyses.\",\"PeriodicalId\":8446,\"journal\":{\"name\":\"arXiv: Computation\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2016-02-16\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"18\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"arXiv: Computation\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.4310/AMSA.2018.V3.N2.A2\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"arXiv: Computation","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.4310/AMSA.2018.V3.N2.A2","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 18

摘要

研究了小面积估计中不确定测度的估计问题,在估计前先进行模型选择。提出了一种统一的蒙特卡罗折刀法,即McJack,用于估计均方预测误差的对数。我们证明了McJack的二阶无偏性,并通过包括仿真研究和实际数据分析在内的实证研究证明了McJack在模型选择后评估SAE不确定性方面的性能。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
A Unified Monte-Carlo Jackknife for Small Area Estimation after Model Selection
We consider estimation of measure of uncertainty in small area estimation (SAE) when a procedure of model selection is involved prior to the estimation. A unified Monte-Carlo jackknife method, called McJack, is proposed for estimating the logarithm of the mean squared prediction error. We prove the second-order unbiasedness of McJack, and demonstrate the performance of McJack in assessing uncertainty in SAE after model selection through empirical investigations that include simulation studies and real-data analyses.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Double Happiness: Enhancing the Coupled Gains of L-lag Coupling via Control Variates. SCOREDRIVENMODELS.JL: A JULIA PACKAGE FOR GENERALIZED AUTOREGRESSIVE SCORE MODELS Simple conditions for convergence of sequential Monte Carlo genealogies with applications Increasing the efficiency of Sequential Monte Carlo samplers through the use of approximately optimal L-kernels Particle Methods for Stochastic Differential Equation Mixed Effects Models
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1