Dong-Feng Zhang, Hua Zhang, Lin Guo, K. Zheng, Xiaodong Han, Ze Zhang
{"title":"晶型面取向Cu2O纳米晶的精细控制及其相关吸附能力","authors":"Dong-Feng Zhang, Hua Zhang, Lin Guo, K. Zheng, Xiaodong Han, Ze Zhang","doi":"10.1039/B816349A","DOIUrl":null,"url":null,"abstract":"In this work, we demonstrate the systematic and delicate geometry control of Cu2O nanocrystals by taking advantage of the selective surface stabilization effect. A variety of Cu2O architectures, evolved from cubes through truncated cubes, cubooctahedrons, truncated octahedrons and finally to octahedrons, were achieved by simply adjusting the added PVP. Based on the understanding of the intrinsic structural features of the cuprite Cu2O and PVP, we elucidated the underlying shape evolution mechanism. The as-prepared products demonstrated a crystallography-dependent adsorption ability with methyl orange (MeO) as the pollutant. With the advantage of a low cost, high yield and straightforward procedure without pre-formed crystals as sacrificial templates, this method may provide a good starting point for the study of shape construction and morphology-dependent properties of other nanocrystals.","PeriodicalId":6,"journal":{"name":"ACS Applied Nano Materials","volume":null,"pages":null},"PeriodicalIF":5.3000,"publicationDate":"2009-07-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"372","resultStr":"{\"title\":\"Delicate control of crystallographic facet-oriented Cu2O nanocrystals and the correlated adsorption ability\",\"authors\":\"Dong-Feng Zhang, Hua Zhang, Lin Guo, K. Zheng, Xiaodong Han, Ze Zhang\",\"doi\":\"10.1039/B816349A\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In this work, we demonstrate the systematic and delicate geometry control of Cu2O nanocrystals by taking advantage of the selective surface stabilization effect. A variety of Cu2O architectures, evolved from cubes through truncated cubes, cubooctahedrons, truncated octahedrons and finally to octahedrons, were achieved by simply adjusting the added PVP. Based on the understanding of the intrinsic structural features of the cuprite Cu2O and PVP, we elucidated the underlying shape evolution mechanism. The as-prepared products demonstrated a crystallography-dependent adsorption ability with methyl orange (MeO) as the pollutant. With the advantage of a low cost, high yield and straightforward procedure without pre-formed crystals as sacrificial templates, this method may provide a good starting point for the study of shape construction and morphology-dependent properties of other nanocrystals.\",\"PeriodicalId\":6,\"journal\":{\"name\":\"ACS Applied Nano Materials\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":5.3000,\"publicationDate\":\"2009-07-14\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"372\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"ACS Applied Nano Materials\",\"FirstCategoryId\":\"1\",\"ListUrlMain\":\"https://doi.org/10.1039/B816349A\",\"RegionNum\":2,\"RegionCategory\":\"材料科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"MATERIALS SCIENCE, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACS Applied Nano Materials","FirstCategoryId":"1","ListUrlMain":"https://doi.org/10.1039/B816349A","RegionNum":2,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATERIALS SCIENCE, MULTIDISCIPLINARY","Score":null,"Total":0}
Delicate control of crystallographic facet-oriented Cu2O nanocrystals and the correlated adsorption ability
In this work, we demonstrate the systematic and delicate geometry control of Cu2O nanocrystals by taking advantage of the selective surface stabilization effect. A variety of Cu2O architectures, evolved from cubes through truncated cubes, cubooctahedrons, truncated octahedrons and finally to octahedrons, were achieved by simply adjusting the added PVP. Based on the understanding of the intrinsic structural features of the cuprite Cu2O and PVP, we elucidated the underlying shape evolution mechanism. The as-prepared products demonstrated a crystallography-dependent adsorption ability with methyl orange (MeO) as the pollutant. With the advantage of a low cost, high yield and straightforward procedure without pre-formed crystals as sacrificial templates, this method may provide a good starting point for the study of shape construction and morphology-dependent properties of other nanocrystals.
期刊介绍:
ACS Applied Nano Materials is an interdisciplinary journal publishing original research covering all aspects of engineering, chemistry, physics and biology relevant to applications of nanomaterials. The journal is devoted to reports of new and original experimental and theoretical research of an applied nature that integrate knowledge in the areas of materials, engineering, physics, bioscience, and chemistry into important applications of nanomaterials.