Aline Romero-Natale, G. Rebollar-Pérez, I. Ortíz, M. G. Tenorio-Arvide, R. Munguia-Perez, I. Palchetti, E. Torres
{"title":"用复杂地层法测定水样中乐果的简易光谱法","authors":"Aline Romero-Natale, G. Rebollar-Pérez, I. Ortíz, M. G. Tenorio-Arvide, R. Munguia-Perez, I. Palchetti, E. Torres","doi":"10.1080/03601234.2019.1696095","DOIUrl":null,"url":null,"abstract":"Abstract A simple and rapid method for the determination of dimethoate in water was developed based on the monitoring of the complex formation between bis 5-phenyldipyrrinate of nickel (II) and the herbicide dimethoate. The method showed a short response time (10 s), high selectivity (very low interference from other sulfate and salts), high sensitivity (limit of detection (LOD) 0.45 µM, limit of quantitation (LOQ) of 1.39 µM), and a Kd of 2.4 µM. Stoichiometry experiments showed that complex formation occurred with a 1:1 relation. The method was applied to different environmental water samples such as lagoon, stream, urban, and groundwater samples. The results indicated that independently from the water source, the method exhibited high precision (0.25–2.47% variation coefficient) and accuracy (84.42–115.68% recovery). In addition, the method was also tested using an effluent from a wastewater treatment plant from Mexico; however, the results indicated that the presence of organic matter had a pronounced effect on the detection.","PeriodicalId":15670,"journal":{"name":"Journal of Environmental Science and Health, Part B","volume":"28 1","pages":"310 - 318"},"PeriodicalIF":0.0000,"publicationDate":"2019-11-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"4","resultStr":"{\"title\":\"A simple spectroscopic method to determine dimethoate in water samples by complex formation\",\"authors\":\"Aline Romero-Natale, G. Rebollar-Pérez, I. Ortíz, M. G. Tenorio-Arvide, R. Munguia-Perez, I. Palchetti, E. Torres\",\"doi\":\"10.1080/03601234.2019.1696095\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Abstract A simple and rapid method for the determination of dimethoate in water was developed based on the monitoring of the complex formation between bis 5-phenyldipyrrinate of nickel (II) and the herbicide dimethoate. The method showed a short response time (10 s), high selectivity (very low interference from other sulfate and salts), high sensitivity (limit of detection (LOD) 0.45 µM, limit of quantitation (LOQ) of 1.39 µM), and a Kd of 2.4 µM. Stoichiometry experiments showed that complex formation occurred with a 1:1 relation. The method was applied to different environmental water samples such as lagoon, stream, urban, and groundwater samples. The results indicated that independently from the water source, the method exhibited high precision (0.25–2.47% variation coefficient) and accuracy (84.42–115.68% recovery). In addition, the method was also tested using an effluent from a wastewater treatment plant from Mexico; however, the results indicated that the presence of organic matter had a pronounced effect on the detection.\",\"PeriodicalId\":15670,\"journal\":{\"name\":\"Journal of Environmental Science and Health, Part B\",\"volume\":\"28 1\",\"pages\":\"310 - 318\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2019-11-29\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"4\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Environmental Science and Health, Part B\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1080/03601234.2019.1696095\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Environmental Science and Health, Part B","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1080/03601234.2019.1696095","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
A simple spectroscopic method to determine dimethoate in water samples by complex formation
Abstract A simple and rapid method for the determination of dimethoate in water was developed based on the monitoring of the complex formation between bis 5-phenyldipyrrinate of nickel (II) and the herbicide dimethoate. The method showed a short response time (10 s), high selectivity (very low interference from other sulfate and salts), high sensitivity (limit of detection (LOD) 0.45 µM, limit of quantitation (LOQ) of 1.39 µM), and a Kd of 2.4 µM. Stoichiometry experiments showed that complex formation occurred with a 1:1 relation. The method was applied to different environmental water samples such as lagoon, stream, urban, and groundwater samples. The results indicated that independently from the water source, the method exhibited high precision (0.25–2.47% variation coefficient) and accuracy (84.42–115.68% recovery). In addition, the method was also tested using an effluent from a wastewater treatment plant from Mexico; however, the results indicated that the presence of organic matter had a pronounced effect on the detection.