在未校准的自然照明下,从单个RGB-D图像获得高质量形状

Yudeog Han, Joon-Young Lee, In-So Kweon
{"title":"在未校准的自然照明下,从单个RGB-D图像获得高质量形状","authors":"Yudeog Han, Joon-Young Lee, In-So Kweon","doi":"10.1109/ICCV.2013.204","DOIUrl":null,"url":null,"abstract":"We present a novel framework to estimate detailed shape of diffuse objects with uniform albedo from a single RGB-D image. To estimate accurate lighting in natural illumination environment, we introduce a general lighting model consisting of two components: global and local models. The global lighting model is estimated from the RGB-D input using the low-dimensional characteristic of a diffuse reflectance model. The local lighting model represents spatially varying illumination and it is estimated by using the smoothly-varying characteristic of illumination. With both the global and local lighting model, we can estimate complex lighting variations in uncontrolled natural illumination conditions accurately. For high quality shape capture, a shape-from-shading approach is applied with the estimated lighting model. Since the entire process is done with a single RGB-D input, our method is capable of capturing the high quality shape details of a dynamic object under natural illumination. Experimental results demonstrate the feasibility and effectiveness of our method that dramatically improves shape details of the rough depth input.","PeriodicalId":6351,"journal":{"name":"2013 IEEE International Conference on Computer Vision","volume":"47 1","pages":"1617-1624"},"PeriodicalIF":0.0000,"publicationDate":"2013-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"97","resultStr":"{\"title\":\"High Quality Shape from a Single RGB-D Image under Uncalibrated Natural Illumination\",\"authors\":\"Yudeog Han, Joon-Young Lee, In-So Kweon\",\"doi\":\"10.1109/ICCV.2013.204\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"We present a novel framework to estimate detailed shape of diffuse objects with uniform albedo from a single RGB-D image. To estimate accurate lighting in natural illumination environment, we introduce a general lighting model consisting of two components: global and local models. The global lighting model is estimated from the RGB-D input using the low-dimensional characteristic of a diffuse reflectance model. The local lighting model represents spatially varying illumination and it is estimated by using the smoothly-varying characteristic of illumination. With both the global and local lighting model, we can estimate complex lighting variations in uncontrolled natural illumination conditions accurately. For high quality shape capture, a shape-from-shading approach is applied with the estimated lighting model. Since the entire process is done with a single RGB-D input, our method is capable of capturing the high quality shape details of a dynamic object under natural illumination. Experimental results demonstrate the feasibility and effectiveness of our method that dramatically improves shape details of the rough depth input.\",\"PeriodicalId\":6351,\"journal\":{\"name\":\"2013 IEEE International Conference on Computer Vision\",\"volume\":\"47 1\",\"pages\":\"1617-1624\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2013-12-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"97\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2013 IEEE International Conference on Computer Vision\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ICCV.2013.204\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2013 IEEE International Conference on Computer Vision","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICCV.2013.204","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 97

摘要

我们提出了一种新的框架来估计具有均匀反照率的漫射物体的详细形状从单个RGB-D图像。为了估计自然光照环境下的精确照明,我们引入了一个由全局模型和局部模型两部分组成的通用照明模型。利用漫反射模型的低维特性,从RGB-D输入估计全局照明模型。局部照明模型表示空间变化的照度,并利用照度的平滑变化特性对其进行估计。利用全局和局部光照模型,我们可以准确地估计自然光照不受控制条件下的复杂光照变化。为了获得高质量的形状捕获,我们采用了一种基于阴影的形状捕获方法。由于整个过程是用一个RGB-D输入完成的,我们的方法能够在自然光照下捕获动态物体的高质量形状细节。实验结果证明了该方法的可行性和有效性,显著改善了粗深度输入的形状细节。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
High Quality Shape from a Single RGB-D Image under Uncalibrated Natural Illumination
We present a novel framework to estimate detailed shape of diffuse objects with uniform albedo from a single RGB-D image. To estimate accurate lighting in natural illumination environment, we introduce a general lighting model consisting of two components: global and local models. The global lighting model is estimated from the RGB-D input using the low-dimensional characteristic of a diffuse reflectance model. The local lighting model represents spatially varying illumination and it is estimated by using the smoothly-varying characteristic of illumination. With both the global and local lighting model, we can estimate complex lighting variations in uncontrolled natural illumination conditions accurately. For high quality shape capture, a shape-from-shading approach is applied with the estimated lighting model. Since the entire process is done with a single RGB-D input, our method is capable of capturing the high quality shape details of a dynamic object under natural illumination. Experimental results demonstrate the feasibility and effectiveness of our method that dramatically improves shape details of the rough depth input.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
PixelTrack: A Fast Adaptive Algorithm for Tracking Non-rigid Objects A General Dense Image Matching Framework Combining Direct and Feature-Based Costs Latent Space Sparse Subspace Clustering Non-convex P-Norm Projection for Robust Sparsity Hierarchical Joint Max-Margin Learning of Mid and Top Level Representations for Visual Recognition
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1