高压下掺锂MgH16中电荷转移的潜在机制

Chong Wang, Seho Yi, Shuyuan Liu, Jun-Hyung Cho
{"title":"高压下掺锂MgH16中电荷转移的潜在机制","authors":"Chong Wang, Seho Yi, Shuyuan Liu, Jun-Hyung Cho","doi":"10.1103/physrevb.102.184509","DOIUrl":null,"url":null,"abstract":"A lithium-doped magnesium hydride Li$_2$MgH$_{16}$ was recently reported [Y. Sun $et$ $al$., Phys. Rev. Lett. {\\bf 123}, 097001 (2019)] to exhibit the highest ever predicted superconducting transition temperature $T_{\\rm c}$ under high pressure. Based on first-principles density-functional theory calculations, we reveal that the Li dopants locating in the pyroclore lattice sites give rise to the excess electrons distributed in interstitial regions. Such loosely bound anionic electrons are easily captured to stabilize a clathrate structure consisting of H cages. This addition of anionic electrons to H cages enhances the H-derived electronic density of states at the Fermi level, thereby leading to a high-$T_{\\rm c}$ superconductivity. We thus propose that the electride nature of Li dopants is an essential ingredient in the charge transfer between Li dopants and H atoms. Our findings offer a deeper understanding of the underlying mechanism of charge transfer in Li$_2$MgH$_{16}$ at high pressure.","PeriodicalId":8514,"journal":{"name":"arXiv: Superconductivity","volume":"30 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2020-07-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":"{\"title\":\"Underlying mechanism of charge transfer in Li-doped \\nMgH16\\n at high pressure\",\"authors\":\"Chong Wang, Seho Yi, Shuyuan Liu, Jun-Hyung Cho\",\"doi\":\"10.1103/physrevb.102.184509\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"A lithium-doped magnesium hydride Li$_2$MgH$_{16}$ was recently reported [Y. Sun $et$ $al$., Phys. Rev. Lett. {\\\\bf 123}, 097001 (2019)] to exhibit the highest ever predicted superconducting transition temperature $T_{\\\\rm c}$ under high pressure. Based on first-principles density-functional theory calculations, we reveal that the Li dopants locating in the pyroclore lattice sites give rise to the excess electrons distributed in interstitial regions. Such loosely bound anionic electrons are easily captured to stabilize a clathrate structure consisting of H cages. This addition of anionic electrons to H cages enhances the H-derived electronic density of states at the Fermi level, thereby leading to a high-$T_{\\\\rm c}$ superconductivity. We thus propose that the electride nature of Li dopants is an essential ingredient in the charge transfer between Li dopants and H atoms. Our findings offer a deeper understanding of the underlying mechanism of charge transfer in Li$_2$MgH$_{16}$ at high pressure.\",\"PeriodicalId\":8514,\"journal\":{\"name\":\"arXiv: Superconductivity\",\"volume\":\"30 1\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2020-07-08\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"2\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"arXiv: Superconductivity\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1103/physrevb.102.184509\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"arXiv: Superconductivity","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1103/physrevb.102.184509","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 2

摘要

最近报道了一种掺杂锂的氢化镁Li$_2$MgH$_{16}$ [Y]。Sun $et$ al$。、phy。启。[\bf 123}, 097001(2019)]在高压下表现出有史以来预测的最高超导转变温度$T_{\rm c}$。基于第一性原理密度泛函理论计算,我们揭示了锂掺杂剂位于焦释石晶格位置导致多余电子分布在间隙区域。这种松散结合的阴离子电子很容易被捕获,以稳定由H笼组成的笼形物结构。在H笼中加入阴离子电子增强了费米能级上H衍生态的电子密度,从而导致高T_{\rm c}$超导性。因此,我们认为锂掺杂剂的电性质是锂掺杂剂和氢原子之间电荷转移的重要因素。我们的研究结果对Li$_2$MgH$_{16}$高压下电荷转移的潜在机制有了更深入的了解。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Underlying mechanism of charge transfer in Li-doped MgH16 at high pressure
A lithium-doped magnesium hydride Li$_2$MgH$_{16}$ was recently reported [Y. Sun $et$ $al$., Phys. Rev. Lett. {\bf 123}, 097001 (2019)] to exhibit the highest ever predicted superconducting transition temperature $T_{\rm c}$ under high pressure. Based on first-principles density-functional theory calculations, we reveal that the Li dopants locating in the pyroclore lattice sites give rise to the excess electrons distributed in interstitial regions. Such loosely bound anionic electrons are easily captured to stabilize a clathrate structure consisting of H cages. This addition of anionic electrons to H cages enhances the H-derived electronic density of states at the Fermi level, thereby leading to a high-$T_{\rm c}$ superconductivity. We thus propose that the electride nature of Li dopants is an essential ingredient in the charge transfer between Li dopants and H atoms. Our findings offer a deeper understanding of the underlying mechanism of charge transfer in Li$_2$MgH$_{16}$ at high pressure.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Flux trapping in superconducting hydrides under high pressure. Nodal superconductivity and superconducting domes in the topological Kagome metal CsV3Sb5 Bereziskii-Kosterlitz-Thouless transition in the Weyl system PtBi2 Josephson effect of superconductors with J=32 electrons Insulating regime of an underdamped current-biased Josephson junction supporting Z3 and Z4 parafermions
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1