Mingkui Tan, Shijie Xiao, Junbin Gao, Dong Xu, A. Hengel, Javen Qinfeng Shi
{"title":"大规模迹范数最小化的近端黎曼追踪","authors":"Mingkui Tan, Shijie Xiao, Junbin Gao, Dong Xu, A. Hengel, Javen Qinfeng Shi","doi":"10.1109/CVPR.2016.633","DOIUrl":null,"url":null,"abstract":"Trace-norm regularization plays an important role in many areas such as computer vision and machine learning. When solving general large-scale trace-norm regularized problems, existing methods may be computationally expensive due to many high-dimensional truncated singular value decompositions (SVDs) or the unawareness of matrix ranks. In this paper, we propose a proximal Riemannian pursuit (PRP) paradigm which addresses a sequence of trace-norm regularized subproblems defined on nonlinear matrix varieties. To address the subproblem, we extend the proximal gradient method on vector space to nonlinear matrix varieties, in which the SVDs of intermediate solutions are maintained by cheap low-rank QR decompositions, therefore making the proposed method more scalable. Empirical studies on several tasks, such as matrix completion and low-rank representation based subspace clustering, demonstrate the competitive performance of the proposed paradigms over existing methods.","PeriodicalId":6515,"journal":{"name":"2016 IEEE Conference on Computer Vision and Pattern Recognition (CVPR)","volume":"49 1","pages":"5877-5886"},"PeriodicalIF":0.0000,"publicationDate":"2016-06-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"5","resultStr":"{\"title\":\"Proximal Riemannian Pursuit for Large-Scale Trace-Norm Minimization\",\"authors\":\"Mingkui Tan, Shijie Xiao, Junbin Gao, Dong Xu, A. Hengel, Javen Qinfeng Shi\",\"doi\":\"10.1109/CVPR.2016.633\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Trace-norm regularization plays an important role in many areas such as computer vision and machine learning. When solving general large-scale trace-norm regularized problems, existing methods may be computationally expensive due to many high-dimensional truncated singular value decompositions (SVDs) or the unawareness of matrix ranks. In this paper, we propose a proximal Riemannian pursuit (PRP) paradigm which addresses a sequence of trace-norm regularized subproblems defined on nonlinear matrix varieties. To address the subproblem, we extend the proximal gradient method on vector space to nonlinear matrix varieties, in which the SVDs of intermediate solutions are maintained by cheap low-rank QR decompositions, therefore making the proposed method more scalable. Empirical studies on several tasks, such as matrix completion and low-rank representation based subspace clustering, demonstrate the competitive performance of the proposed paradigms over existing methods.\",\"PeriodicalId\":6515,\"journal\":{\"name\":\"2016 IEEE Conference on Computer Vision and Pattern Recognition (CVPR)\",\"volume\":\"49 1\",\"pages\":\"5877-5886\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2016-06-27\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"5\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2016 IEEE Conference on Computer Vision and Pattern Recognition (CVPR)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/CVPR.2016.633\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2016 IEEE Conference on Computer Vision and Pattern Recognition (CVPR)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/CVPR.2016.633","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Proximal Riemannian Pursuit for Large-Scale Trace-Norm Minimization
Trace-norm regularization plays an important role in many areas such as computer vision and machine learning. When solving general large-scale trace-norm regularized problems, existing methods may be computationally expensive due to many high-dimensional truncated singular value decompositions (SVDs) or the unawareness of matrix ranks. In this paper, we propose a proximal Riemannian pursuit (PRP) paradigm which addresses a sequence of trace-norm regularized subproblems defined on nonlinear matrix varieties. To address the subproblem, we extend the proximal gradient method on vector space to nonlinear matrix varieties, in which the SVDs of intermediate solutions are maintained by cheap low-rank QR decompositions, therefore making the proposed method more scalable. Empirical studies on several tasks, such as matrix completion and low-rank representation based subspace clustering, demonstrate the competitive performance of the proposed paradigms over existing methods.