{"title":"羊皮纸浸渍钼酸钡人工膜的离子选择性研究","authors":"Afren Ansari, A. K. Shukla, Mohd. Ayub Ansari","doi":"10.14419/ijac.v10i2.32134","DOIUrl":null,"url":null,"abstract":"Parchment impregnated Ba(II) molybdate artificial membrane was prepared by the ion-interaction method using BaCl2 and Na2MoO4 solutions. The prepared membrane was characterized by sophisticated instrumental techniques such as Scanning electron microscopy (SEM), Transmission electron microscopy (TEM), Fourier-transform infrared (FT-IR) spectroscopy, Thermogravimetric analysis (TGA)/Differential thermal analysis (DTA), X-ray diffraction (XRD) and Energy dispersive X-ray (EDX) analysis. The artificial membrane was tested for its antimicrobial activity against Gram-negative (Escherichia coli and Pseudomonas aeruginosa) and Gram-positive (Staphylococcus aureus) microorganism. The effective fixed charge density of the prepared membrane has been used individually to calculate theoretical bi-ionic potentials (BIP) and compared with experimentally determined values of bi-ionic potential. The selectivity of ions for the membrane has been found as K+>Na+>Li+ which on the basis of the Eisenman-Sherry model of membrane selectivity, points towards the low field strength of the charge groups joined to the membrane matrix. Membrane conductance values has also been experimentally determined.  ","PeriodicalId":13723,"journal":{"name":"International Journal of Advanced Chemistry","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2022-10-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Studies on ion selectivity of parchment impregnated Ba(II) molybdate artificial membrane\",\"authors\":\"Afren Ansari, A. K. Shukla, Mohd. Ayub Ansari\",\"doi\":\"10.14419/ijac.v10i2.32134\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Parchment impregnated Ba(II) molybdate artificial membrane was prepared by the ion-interaction method using BaCl2 and Na2MoO4 solutions. The prepared membrane was characterized by sophisticated instrumental techniques such as Scanning electron microscopy (SEM), Transmission electron microscopy (TEM), Fourier-transform infrared (FT-IR) spectroscopy, Thermogravimetric analysis (TGA)/Differential thermal analysis (DTA), X-ray diffraction (XRD) and Energy dispersive X-ray (EDX) analysis. The artificial membrane was tested for its antimicrobial activity against Gram-negative (Escherichia coli and Pseudomonas aeruginosa) and Gram-positive (Staphylococcus aureus) microorganism. The effective fixed charge density of the prepared membrane has been used individually to calculate theoretical bi-ionic potentials (BIP) and compared with experimentally determined values of bi-ionic potential. The selectivity of ions for the membrane has been found as K+>Na+>Li+ which on the basis of the Eisenman-Sherry model of membrane selectivity, points towards the low field strength of the charge groups joined to the membrane matrix. Membrane conductance values has also been experimentally determined.  \",\"PeriodicalId\":13723,\"journal\":{\"name\":\"International Journal of Advanced Chemistry\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2022-10-04\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"International Journal of Advanced Chemistry\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.14419/ijac.v10i2.32134\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Advanced Chemistry","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.14419/ijac.v10i2.32134","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Studies on ion selectivity of parchment impregnated Ba(II) molybdate artificial membrane
Parchment impregnated Ba(II) molybdate artificial membrane was prepared by the ion-interaction method using BaCl2 and Na2MoO4 solutions. The prepared membrane was characterized by sophisticated instrumental techniques such as Scanning electron microscopy (SEM), Transmission electron microscopy (TEM), Fourier-transform infrared (FT-IR) spectroscopy, Thermogravimetric analysis (TGA)/Differential thermal analysis (DTA), X-ray diffraction (XRD) and Energy dispersive X-ray (EDX) analysis. The artificial membrane was tested for its antimicrobial activity against Gram-negative (Escherichia coli and Pseudomonas aeruginosa) and Gram-positive (Staphylococcus aureus) microorganism. The effective fixed charge density of the prepared membrane has been used individually to calculate theoretical bi-ionic potentials (BIP) and compared with experimentally determined values of bi-ionic potential. The selectivity of ions for the membrane has been found as K+>Na+>Li+ which on the basis of the Eisenman-Sherry model of membrane selectivity, points towards the low field strength of the charge groups joined to the membrane matrix. Membrane conductance values has also been experimentally determined. Â