基于深度强化学习的设备间通信资源分配方案

Seoyoung Yu, Yun Jae Jeong, J. W. Lee
{"title":"基于深度强化学习的设备间通信资源分配方案","authors":"Seoyoung Yu, Yun Jae Jeong, J. W. Lee","doi":"10.1109/ICOIN50884.2021.9333953","DOIUrl":null,"url":null,"abstract":"In this paper, we propose a decentralized resource allocation scheme based on deep reinforcement learning designed for device-to-device communications underlay cellular networks. The proposed scheme allocates appropriate channel resource and transmit power to each D2D pairs iteratively to maximize the overall effective throughput by utilizing observation consisting of location information of mobile devices and resource allocation of the other devices.","PeriodicalId":6741,"journal":{"name":"2021 International Conference on Information Networking (ICOIN)","volume":"22 1","pages":"712-714"},"PeriodicalIF":0.0000,"publicationDate":"2021-01-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":"{\"title\":\"Resource Allocation Scheme Based on Deep Reinforcement Learning for Device-to-Device Communications\",\"authors\":\"Seoyoung Yu, Yun Jae Jeong, J. W. Lee\",\"doi\":\"10.1109/ICOIN50884.2021.9333953\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In this paper, we propose a decentralized resource allocation scheme based on deep reinforcement learning designed for device-to-device communications underlay cellular networks. The proposed scheme allocates appropriate channel resource and transmit power to each D2D pairs iteratively to maximize the overall effective throughput by utilizing observation consisting of location information of mobile devices and resource allocation of the other devices.\",\"PeriodicalId\":6741,\"journal\":{\"name\":\"2021 International Conference on Information Networking (ICOIN)\",\"volume\":\"22 1\",\"pages\":\"712-714\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2021-01-13\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"3\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2021 International Conference on Information Networking (ICOIN)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ICOIN50884.2021.9333953\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2021 International Conference on Information Networking (ICOIN)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICOIN50884.2021.9333953","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 3

摘要

在本文中,我们提出了一种基于深度强化学习的分散资源分配方案,该方案专为蜂窝网络底层设备对设备通信设计。该方案通过观察移动设备的位置信息和其他设备的资源分配情况,迭代地为每个D2D对分配适当的信道资源和发射功率,以最大限度地提高整体有效吞吐量。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Resource Allocation Scheme Based on Deep Reinforcement Learning for Device-to-Device Communications
In this paper, we propose a decentralized resource allocation scheme based on deep reinforcement learning designed for device-to-device communications underlay cellular networks. The proposed scheme allocates appropriate channel resource and transmit power to each D2D pairs iteratively to maximize the overall effective throughput by utilizing observation consisting of location information of mobile devices and resource allocation of the other devices.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
A Study on the Cluster-wise Regression Model for Bead Width in the Automatic GMA Welding GDFed: Dynamic Federated Learning for Heterogenous Device Using Graph Neural Network A Solution for Recovering Network Topology with Missing Links using Sparse Modeling Real-time health monitoring system design based on optical camera communication Multimedia Contents Retrieval based on 12-Mood Vector
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1