{"title":"灰色支持向量回归模型在台湾大陆游客预测中的应用","authors":"Ruey-Chyn Tsaur, S. Chan","doi":"10.6186/IJIMS.2014.25.2.3","DOIUrl":null,"url":null,"abstract":"Support vector regression (SVR) has been successful in function approximation for forecasting analysis based on the idea of structural risk minimization. SVR has perfect forecasting performance by employing in large sample size for training and solving its parameters, where the SVR is difficult to be applied in limited time series data with some fluctuated points; in contrast, grey model has better forecasting performance in limited time series data. In order to cope with this problem, we use both of the advantages of support vector regression model and grey theory to construct a new grey support vector regression (GSVR) model for solving limited data with some fluctuations. Finally, we demonstrate an application for planning China tourism demand for improving the tourism infrastructure in Taiwan with a better forecasting performance.","PeriodicalId":39953,"journal":{"name":"International Journal of Information and Management Sciences","volume":"74 1","pages":"121-138"},"PeriodicalIF":0.0000,"publicationDate":"2014-07-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":"{\"title\":\"Grey Support Vector Regression Model with Applications to China Tourists Forecasting in Taiwan\",\"authors\":\"Ruey-Chyn Tsaur, S. Chan\",\"doi\":\"10.6186/IJIMS.2014.25.2.3\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Support vector regression (SVR) has been successful in function approximation for forecasting analysis based on the idea of structural risk minimization. SVR has perfect forecasting performance by employing in large sample size for training and solving its parameters, where the SVR is difficult to be applied in limited time series data with some fluctuated points; in contrast, grey model has better forecasting performance in limited time series data. In order to cope with this problem, we use both of the advantages of support vector regression model and grey theory to construct a new grey support vector regression (GSVR) model for solving limited data with some fluctuations. Finally, we demonstrate an application for planning China tourism demand for improving the tourism infrastructure in Taiwan with a better forecasting performance.\",\"PeriodicalId\":39953,\"journal\":{\"name\":\"International Journal of Information and Management Sciences\",\"volume\":\"74 1\",\"pages\":\"121-138\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2014-07-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"2\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"International Journal of Information and Management Sciences\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.6186/IJIMS.2014.25.2.3\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"Engineering\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Information and Management Sciences","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.6186/IJIMS.2014.25.2.3","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"Engineering","Score":null,"Total":0}
Grey Support Vector Regression Model with Applications to China Tourists Forecasting in Taiwan
Support vector regression (SVR) has been successful in function approximation for forecasting analysis based on the idea of structural risk minimization. SVR has perfect forecasting performance by employing in large sample size for training and solving its parameters, where the SVR is difficult to be applied in limited time series data with some fluctuated points; in contrast, grey model has better forecasting performance in limited time series data. In order to cope with this problem, we use both of the advantages of support vector regression model and grey theory to construct a new grey support vector regression (GSVR) model for solving limited data with some fluctuations. Finally, we demonstrate an application for planning China tourism demand for improving the tourism infrastructure in Taiwan with a better forecasting performance.
期刊介绍:
- Information Management - Management Sciences - Operation Research - Decision Theory - System Theory - Statistics - Business Administration - Finance - Numerical computations - Statistical simulations - Decision support system - Expert system - Knowledge-based systems - Artificial intelligence