{"title":"HASS AVOKADO YAPRAĞI: MİKRODALGA DESTEKLİ EKSTRAKSİYON PARAMETRELERİ, FENOLİK BİLEŞİKLER, ANTİOKSİDAN VE ANTİDİYABETİK AKTİVİTELERİN OPTİMİZASYONU","authors":"Nevriye Kurt, Ebru Aydin, Gülcan Özkan","doi":"10.15237/gida.gd23067","DOIUrl":null,"url":null,"abstract":"Avocado leaves, typically considered as pruning residues, possess a significant amount of bioactive compounds. This research aimed to optimize the extraction of phenolic compounds from Hass avocado leaves using microwave-assisted extraction (MAE) and response surface method (RSM). The extraction yield and total phenolic content (TPC) were maximized by determining the optimal process conditions, which were found to be 47°C for 5 minutes and a solid/solvent ratio of 1.13 g dry leaf/100 mL, respectively. The predicted values of all models were found to be statistically significant (p <0.001). The aqueous extracts' antidiabetic and antioxidant activities were 64.59% and 235.6 mg TE/100 g, respectively. The amount of TPC was 591.76 μg GAE/g extract, and chlorogenic acid was the main phenolic component. These results indicated that MAE proved efficient with low energy consumption, yielding phenolic-rich avocado leaf extracts, which possess high antioxidant and antidiabetic activities.","PeriodicalId":12625,"journal":{"name":"Gida the Journal of Food","volume":"30 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2023-08-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Gida the Journal of Food","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.15237/gida.gd23067","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Avocado leaves, typically considered as pruning residues, possess a significant amount of bioactive compounds. This research aimed to optimize the extraction of phenolic compounds from Hass avocado leaves using microwave-assisted extraction (MAE) and response surface method (RSM). The extraction yield and total phenolic content (TPC) were maximized by determining the optimal process conditions, which were found to be 47°C for 5 minutes and a solid/solvent ratio of 1.13 g dry leaf/100 mL, respectively. The predicted values of all models were found to be statistically significant (p <0.001). The aqueous extracts' antidiabetic and antioxidant activities were 64.59% and 235.6 mg TE/100 g, respectively. The amount of TPC was 591.76 μg GAE/g extract, and chlorogenic acid was the main phenolic component. These results indicated that MAE proved efficient with low energy consumption, yielding phenolic-rich avocado leaf extracts, which possess high antioxidant and antidiabetic activities.