里德堡原子外差接收链路本征膨胀系数的研究

IF 0.8 4区 物理与天体物理 Q3 PHYSICS, MULTIDISCIPLINARY Acta Physica Sinica Pub Date : 2023-01-01 DOI:10.7498/aps.72.20222091
Wu Fengchuan, An Qiang, Yao Jiawei, Fu Yunqi
{"title":"里德堡原子外差接收链路本征膨胀系数的研究","authors":"Wu Fengchuan, An Qiang, Yao Jiawei, Fu Yunqi","doi":"10.7498/aps.72.20222091","DOIUrl":null,"url":null,"abstract":"Rydberg atom can respond to weak microwave electric field signal in real-time by using its electromagnetically induced transparency effect to realize down conversion of space microwave electric field signal, which can be used as a superheterodyne receiver. The Rydberg atom superheterodyne receiver is a new receiving system composed of Rydberg atoms, photodetectors, and electronic information processing modules. Presently, domestic and foreign scholars have conducted in-depth research on the physical response mechanism of Rydberg atomic superheterodyne receiving technology. However, no complete receiving link analysis model has been established, which is not conducive to optimizing its system performance. Based on the physical mechanism of the Rydberg atom responding to the microwave electric field, this paper introduces the concept of intrinsic expansion coefficient, establishes and experimentally verifies the receiving link model of the Rydberg atom superheterodyne receiver, and briefly discusses the influence of the intrinsic expansion coefficient on the system sensitivity and response characteristics, which provides theoretical guidance for the optimization of the performance of the Rydberg atom superheterodyne receiving system. Last, the Rydberg atomic and the electronic receiving links' sensitivity performance is discussed and compared.","PeriodicalId":6995,"journal":{"name":"Acta Physica Sinica","volume":null,"pages":null},"PeriodicalIF":0.8000,"publicationDate":"2023-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Research on Intrinsic Expansion Coefficients in Rydberg Atomic Heterodyne Receiving Link\",\"authors\":\"Wu Fengchuan, An Qiang, Yao Jiawei, Fu Yunqi\",\"doi\":\"10.7498/aps.72.20222091\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Rydberg atom can respond to weak microwave electric field signal in real-time by using its electromagnetically induced transparency effect to realize down conversion of space microwave electric field signal, which can be used as a superheterodyne receiver. The Rydberg atom superheterodyne receiver is a new receiving system composed of Rydberg atoms, photodetectors, and electronic information processing modules. Presently, domestic and foreign scholars have conducted in-depth research on the physical response mechanism of Rydberg atomic superheterodyne receiving technology. However, no complete receiving link analysis model has been established, which is not conducive to optimizing its system performance. Based on the physical mechanism of the Rydberg atom responding to the microwave electric field, this paper introduces the concept of intrinsic expansion coefficient, establishes and experimentally verifies the receiving link model of the Rydberg atom superheterodyne receiver, and briefly discusses the influence of the intrinsic expansion coefficient on the system sensitivity and response characteristics, which provides theoretical guidance for the optimization of the performance of the Rydberg atom superheterodyne receiving system. Last, the Rydberg atomic and the electronic receiving links' sensitivity performance is discussed and compared.\",\"PeriodicalId\":6995,\"journal\":{\"name\":\"Acta Physica Sinica\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.8000,\"publicationDate\":\"2023-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Acta Physica Sinica\",\"FirstCategoryId\":\"101\",\"ListUrlMain\":\"https://doi.org/10.7498/aps.72.20222091\",\"RegionNum\":4,\"RegionCategory\":\"物理与天体物理\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"PHYSICS, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Acta Physica Sinica","FirstCategoryId":"101","ListUrlMain":"https://doi.org/10.7498/aps.72.20222091","RegionNum":4,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"PHYSICS, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 1

摘要

里德伯原子利用其电磁感应透明效应对弱微波电场信号进行实时响应,实现空间微波电场信号的下变频,可用作超外差接收机。里德伯原子超外差接收机是由里德伯原子、光电探测器和电子信息处理模块组成的一种新型接收系统。目前,国内外学者对里德堡原子超外差接收技术的物理响应机制进行了深入的研究。然而,尚未建立完整的接收环节分析模型,不利于优化其系统性能。基于里德伯原子响应微波电场的物理机理,引入了本征膨胀系数的概念,建立并实验验证了里德伯原子超外差接收机的接收链路模型,并简要讨论了本征膨胀系数对系统灵敏度和响应特性的影响。为Rydberg原子超外差接收系统的性能优化提供了理论指导。最后,对里德伯原子链路和电子接收链路的灵敏度性能进行了讨论和比较。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Research on Intrinsic Expansion Coefficients in Rydberg Atomic Heterodyne Receiving Link
Rydberg atom can respond to weak microwave electric field signal in real-time by using its electromagnetically induced transparency effect to realize down conversion of space microwave electric field signal, which can be used as a superheterodyne receiver. The Rydberg atom superheterodyne receiver is a new receiving system composed of Rydberg atoms, photodetectors, and electronic information processing modules. Presently, domestic and foreign scholars have conducted in-depth research on the physical response mechanism of Rydberg atomic superheterodyne receiving technology. However, no complete receiving link analysis model has been established, which is not conducive to optimizing its system performance. Based on the physical mechanism of the Rydberg atom responding to the microwave electric field, this paper introduces the concept of intrinsic expansion coefficient, establishes and experimentally verifies the receiving link model of the Rydberg atom superheterodyne receiver, and briefly discusses the influence of the intrinsic expansion coefficient on the system sensitivity and response characteristics, which provides theoretical guidance for the optimization of the performance of the Rydberg atom superheterodyne receiving system. Last, the Rydberg atomic and the electronic receiving links' sensitivity performance is discussed and compared.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Acta Physica Sinica
Acta Physica Sinica 物理-物理:综合
CiteScore
1.70
自引率
30.00%
发文量
31245
审稿时长
1.9 months
期刊介绍: Acta Physica Sinica (Acta Phys. Sin.) is supervised by Chinese Academy of Sciences and sponsored by Chinese Physical Society and Institute of Physics, Chinese Academy of Sciences. Published by Chinese Physical Society and launched in 1933, it is a semimonthly journal with about 40 articles per issue. It publishes original and top quality research papers, rapid communications and reviews in all branches of physics in Chinese. Acta Phys. Sin. enjoys high reputation among Chinese physics journals and plays a key role in bridging China and rest of the world in physics research. Specific areas of interest include: Condensed matter and materials physics; Atomic, molecular, and optical physics; Statistical, nonlinear, and soft matter physics; Plasma physics; Interdisciplinary physics.
期刊最新文献
Simulation method of urban evacuation based on mesoscopic cellular automata Medium Correction to Gravitational Form Factors Research progress of applications of freestanding single crystal oxide thin film Research progress of ultra-high spatiotemporal resolved microscopy High-fidelity single-qubit gates of a strong driven singlet-triplet qubit
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1