{"title":"基于CFD的油菜籽联合收割机旋风分离器工作参数对分离器性能的影响","authors":"Xingyu Wan, Jiacheng Yuan, Jia Yang, Yitao Liao, Qingxi Liao","doi":"10.25165/j.ijabe.20231601.7253","DOIUrl":null,"url":null,"abstract":": Existing development for cyclone separation cleaning components of the rapeseed combine harvester, which employs the suspending airflow to separate the rapeseeds from the materials other than grain (MOG), has the challenge to figure out the optimal working parameters, highlighting a need for exploration of the invisible airflow based on Computational Fluid Dynamics (CFD). The airflow status was mainly affected by the air velocities of the inlet, and the outlet for the MOG. The single factor and response surface experiments were carried out. It could be found that the inlet and MOG outlet velocities affected the air velocities through the change in the air quantity. Furthermore, the mathematical model of the relationship between the air velocities inside the cyclone and the working parameters was built, and the optimal combination of working parameters was obtained by multi-objective optimization. The inlet and outlet velocities of the optimal combination were 4.25 m/s and 29.87 m/s, respectively. Under this condition, the cleaning ratio and loss ratio of the cleaning device was 94.62% and 5.39%, respectively, as validated by the field experiment. The findings provide references for the improvement of cleaning systems for rapeseed combine harvesters.","PeriodicalId":13895,"journal":{"name":"International Journal of Agricultural and Biological Engineering","volume":null,"pages":null},"PeriodicalIF":2.2000,"publicationDate":"2023-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":"{\"title\":\"Effects of working parameters on the performance of cyclone separator for rapeseed combine harvester based on CFD\",\"authors\":\"Xingyu Wan, Jiacheng Yuan, Jia Yang, Yitao Liao, Qingxi Liao\",\"doi\":\"10.25165/j.ijabe.20231601.7253\",\"DOIUrl\":null,\"url\":null,\"abstract\":\": Existing development for cyclone separation cleaning components of the rapeseed combine harvester, which employs the suspending airflow to separate the rapeseeds from the materials other than grain (MOG), has the challenge to figure out the optimal working parameters, highlighting a need for exploration of the invisible airflow based on Computational Fluid Dynamics (CFD). The airflow status was mainly affected by the air velocities of the inlet, and the outlet for the MOG. The single factor and response surface experiments were carried out. It could be found that the inlet and MOG outlet velocities affected the air velocities through the change in the air quantity. Furthermore, the mathematical model of the relationship between the air velocities inside the cyclone and the working parameters was built, and the optimal combination of working parameters was obtained by multi-objective optimization. The inlet and outlet velocities of the optimal combination were 4.25 m/s and 29.87 m/s, respectively. Under this condition, the cleaning ratio and loss ratio of the cleaning device was 94.62% and 5.39%, respectively, as validated by the field experiment. The findings provide references for the improvement of cleaning systems for rapeseed combine harvesters.\",\"PeriodicalId\":13895,\"journal\":{\"name\":\"International Journal of Agricultural and Biological Engineering\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":2.2000,\"publicationDate\":\"2023-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"2\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"International Journal of Agricultural and Biological Engineering\",\"FirstCategoryId\":\"97\",\"ListUrlMain\":\"https://doi.org/10.25165/j.ijabe.20231601.7253\",\"RegionNum\":2,\"RegionCategory\":\"农林科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"AGRICULTURAL ENGINEERING\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Agricultural and Biological Engineering","FirstCategoryId":"97","ListUrlMain":"https://doi.org/10.25165/j.ijabe.20231601.7253","RegionNum":2,"RegionCategory":"农林科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"AGRICULTURAL ENGINEERING","Score":null,"Total":0}
Effects of working parameters on the performance of cyclone separator for rapeseed combine harvester based on CFD
: Existing development for cyclone separation cleaning components of the rapeseed combine harvester, which employs the suspending airflow to separate the rapeseeds from the materials other than grain (MOG), has the challenge to figure out the optimal working parameters, highlighting a need for exploration of the invisible airflow based on Computational Fluid Dynamics (CFD). The airflow status was mainly affected by the air velocities of the inlet, and the outlet for the MOG. The single factor and response surface experiments were carried out. It could be found that the inlet and MOG outlet velocities affected the air velocities through the change in the air quantity. Furthermore, the mathematical model of the relationship between the air velocities inside the cyclone and the working parameters was built, and the optimal combination of working parameters was obtained by multi-objective optimization. The inlet and outlet velocities of the optimal combination were 4.25 m/s and 29.87 m/s, respectively. Under this condition, the cleaning ratio and loss ratio of the cleaning device was 94.62% and 5.39%, respectively, as validated by the field experiment. The findings provide references for the improvement of cleaning systems for rapeseed combine harvesters.
期刊介绍:
International Journal of Agricultural and Biological Engineering (IJABE, https://www.ijabe.org) is a peer reviewed open access international journal. IJABE, started in 2008, is a joint publication co-sponsored by US-based Association of Agricultural, Biological and Food Engineers (AOCABFE) and China-based Chinese Society of Agricultural Engineering (CSAE). The ISSN 1934-6344 and eISSN 1934-6352 numbers for both print and online IJABE have been registered in US. Now, Int. J. Agric. & Biol. Eng (IJABE) is published in both online and print version by Chinese Academy of Agricultural Engineering.