{"title":"用于文本匹配的多级匹配网络","authors":"Chunlin Xu, Zhiwei Lin, Shengli Wu, Hui Wang","doi":"10.1145/3331184.3331276","DOIUrl":null,"url":null,"abstract":"Text matching aims to establish the matching relationship between two texts. It is an important operation in some information retrieval related tasks such as question duplicate detection, question answering, and dialog systems. Bidirectional long short term memory (BiLSTM) coupled with attention mechanism has achieved state-of-the-art performance in text matching. A major limitation of existing works is that only high level contextualized word representations are utilized to obtain word level matching results without considering other levels of word representations, thus resulting in incorrect matching decisions for cases where two words with different meanings are very close in high level contextualized word representation space. Therefore, instead of making decisions utilizing single level word representations, a multi-level matching network (MMN) is proposed in this paper for text matching, which utilizes multiple levels of word representations to obtain multiple word level matching results for final text level matching decision. Experimental results on two widely used benchmarks, SNLI and Scaitail, show that the proposed MMN achieves the state-of-the-art performance.","PeriodicalId":20700,"journal":{"name":"Proceedings of the 42nd International ACM SIGIR Conference on Research and Development in Information Retrieval","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2019-07-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"8","resultStr":"{\"title\":\"Multi-Level Matching Networks for Text Matching\",\"authors\":\"Chunlin Xu, Zhiwei Lin, Shengli Wu, Hui Wang\",\"doi\":\"10.1145/3331184.3331276\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Text matching aims to establish the matching relationship between two texts. It is an important operation in some information retrieval related tasks such as question duplicate detection, question answering, and dialog systems. Bidirectional long short term memory (BiLSTM) coupled with attention mechanism has achieved state-of-the-art performance in text matching. A major limitation of existing works is that only high level contextualized word representations are utilized to obtain word level matching results without considering other levels of word representations, thus resulting in incorrect matching decisions for cases where two words with different meanings are very close in high level contextualized word representation space. Therefore, instead of making decisions utilizing single level word representations, a multi-level matching network (MMN) is proposed in this paper for text matching, which utilizes multiple levels of word representations to obtain multiple word level matching results for final text level matching decision. Experimental results on two widely used benchmarks, SNLI and Scaitail, show that the proposed MMN achieves the state-of-the-art performance.\",\"PeriodicalId\":20700,\"journal\":{\"name\":\"Proceedings of the 42nd International ACM SIGIR Conference on Research and Development in Information Retrieval\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2019-07-18\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"8\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Proceedings of the 42nd International ACM SIGIR Conference on Research and Development in Information Retrieval\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1145/3331184.3331276\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the 42nd International ACM SIGIR Conference on Research and Development in Information Retrieval","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/3331184.3331276","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Text matching aims to establish the matching relationship between two texts. It is an important operation in some information retrieval related tasks such as question duplicate detection, question answering, and dialog systems. Bidirectional long short term memory (BiLSTM) coupled with attention mechanism has achieved state-of-the-art performance in text matching. A major limitation of existing works is that only high level contextualized word representations are utilized to obtain word level matching results without considering other levels of word representations, thus resulting in incorrect matching decisions for cases where two words with different meanings are very close in high level contextualized word representation space. Therefore, instead of making decisions utilizing single level word representations, a multi-level matching network (MMN) is proposed in this paper for text matching, which utilizes multiple levels of word representations to obtain multiple word level matching results for final text level matching decision. Experimental results on two widely used benchmarks, SNLI and Scaitail, show that the proposed MMN achieves the state-of-the-art performance.