Rod Olga, Molkov Oleg, Lutsenko Nikita, Bolshikh Aleksandr, Storchak Anna
{"title":"预加载状态板条结构对模拟鸟击应力应变状态的影响","authors":"Rod Olga, Molkov Oleg, Lutsenko Nikita, Bolshikh Aleksandr, Storchak Anna","doi":"10.1007/s42401-023-00236-3","DOIUrl":null,"url":null,"abstract":"<div><p>In accordance with aviation regulations, the aircraft must be designed in such a way that it is possible to continue safe flight and landing after a collision between a bird and aircraft. As a validation task, various methods of modeling a mathematical model of a bird were studied. One of the tasks in this paper if the obtained results of modeling bird strike in a plate were compared with the experimental data. One of the stages is the study of the three methods of fluid modeling in the literature: the use of the Euler finite element method, the Lagrange finite element method, and the smoothed particle hydrodynamics method. The object of this paper is to analyze various methods for modeling a bird strike at low speed on slat and the justification of the correct methodology for modeling the bird strike. As a result of the paper, the effect of the preloaded state of the airframe structure on bird strike was determined and a method for modeling the impact of a bird with an aircraft slat under the action of aerodynamic loads was presented.</p></div>","PeriodicalId":36309,"journal":{"name":"Aerospace Systems","volume":"7 1","pages":"131 - 141"},"PeriodicalIF":0.0000,"publicationDate":"2023-06-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Effect of preloaded state slat structure on the stress–strain state of simulation bird strike\",\"authors\":\"Rod Olga, Molkov Oleg, Lutsenko Nikita, Bolshikh Aleksandr, Storchak Anna\",\"doi\":\"10.1007/s42401-023-00236-3\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>In accordance with aviation regulations, the aircraft must be designed in such a way that it is possible to continue safe flight and landing after a collision between a bird and aircraft. As a validation task, various methods of modeling a mathematical model of a bird were studied. One of the tasks in this paper if the obtained results of modeling bird strike in a plate were compared with the experimental data. One of the stages is the study of the three methods of fluid modeling in the literature: the use of the Euler finite element method, the Lagrange finite element method, and the smoothed particle hydrodynamics method. The object of this paper is to analyze various methods for modeling a bird strike at low speed on slat and the justification of the correct methodology for modeling the bird strike. As a result of the paper, the effect of the preloaded state of the airframe structure on bird strike was determined and a method for modeling the impact of a bird with an aircraft slat under the action of aerodynamic loads was presented.</p></div>\",\"PeriodicalId\":36309,\"journal\":{\"name\":\"Aerospace Systems\",\"volume\":\"7 1\",\"pages\":\"131 - 141\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2023-06-30\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Aerospace Systems\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://link.springer.com/article/10.1007/s42401-023-00236-3\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"Earth and Planetary Sciences\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Aerospace Systems","FirstCategoryId":"1085","ListUrlMain":"https://link.springer.com/article/10.1007/s42401-023-00236-3","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"Earth and Planetary Sciences","Score":null,"Total":0}
Effect of preloaded state slat structure on the stress–strain state of simulation bird strike
In accordance with aviation regulations, the aircraft must be designed in such a way that it is possible to continue safe flight and landing after a collision between a bird and aircraft. As a validation task, various methods of modeling a mathematical model of a bird were studied. One of the tasks in this paper if the obtained results of modeling bird strike in a plate were compared with the experimental data. One of the stages is the study of the three methods of fluid modeling in the literature: the use of the Euler finite element method, the Lagrange finite element method, and the smoothed particle hydrodynamics method. The object of this paper is to analyze various methods for modeling a bird strike at low speed on slat and the justification of the correct methodology for modeling the bird strike. As a result of the paper, the effect of the preloaded state of the airframe structure on bird strike was determined and a method for modeling the impact of a bird with an aircraft slat under the action of aerodynamic loads was presented.
期刊介绍:
Aerospace Systems provides an international, peer-reviewed forum which focuses on system-level research and development regarding aeronautics and astronautics. The journal emphasizes the unique role and increasing importance of informatics on aerospace. It fills a gap in current publishing coverage from outer space vehicles to atmospheric vehicles by highlighting interdisciplinary science, technology and engineering.
Potential topics include, but are not limited to:
Trans-space vehicle systems design and integration
Air vehicle systems
Space vehicle systems
Near-space vehicle systems
Aerospace robotics and unmanned system
Communication, navigation and surveillance
Aerodynamics and aircraft design
Dynamics and control
Aerospace propulsion
Avionics system
Opto-electronic system
Air traffic management
Earth observation
Deep space exploration
Bionic micro-aircraft/spacecraft
Intelligent sensing and Information fusion