基于社会评论分析的配方流行度预测

Xudong Mao, Yanghui Rao, Qing Li
{"title":"基于社会评论分析的配方流行度预测","authors":"Xudong Mao, Yanghui Rao, Qing Li","doi":"10.1109/ICAWST.2013.6765504","DOIUrl":null,"url":null,"abstract":"In social based Web services systems, some resources gain popularity while others do not. It would be valuable if we can predict the popularity of certain resource. In this work, we study the recipe popularity prediction problem using the Yelp dataset. We investigate various features that can be extracted and help to improve the performance. In particular, we propose to do the sentiment analysis over the reviews and treat the sentimental scores as one of the features. A polynomial regression model is developed to predict the recipe popularity. The experimental results show that our proposed method outperforms the baseline method.","PeriodicalId":68697,"journal":{"name":"炎黄地理","volume":"294 1","pages":"568-573"},"PeriodicalIF":0.0000,"publicationDate":"2013-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"7","resultStr":"{\"title\":\"Recipe popularity prediction based on the analysis of social reviews\",\"authors\":\"Xudong Mao, Yanghui Rao, Qing Li\",\"doi\":\"10.1109/ICAWST.2013.6765504\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In social based Web services systems, some resources gain popularity while others do not. It would be valuable if we can predict the popularity of certain resource. In this work, we study the recipe popularity prediction problem using the Yelp dataset. We investigate various features that can be extracted and help to improve the performance. In particular, we propose to do the sentiment analysis over the reviews and treat the sentimental scores as one of the features. A polynomial regression model is developed to predict the recipe popularity. The experimental results show that our proposed method outperforms the baseline method.\",\"PeriodicalId\":68697,\"journal\":{\"name\":\"炎黄地理\",\"volume\":\"294 1\",\"pages\":\"568-573\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2013-11-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"7\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"炎黄地理\",\"FirstCategoryId\":\"1089\",\"ListUrlMain\":\"https://doi.org/10.1109/ICAWST.2013.6765504\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"炎黄地理","FirstCategoryId":"1089","ListUrlMain":"https://doi.org/10.1109/ICAWST.2013.6765504","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 7

摘要

在基于社会的Web服务系统中,一些资源受到欢迎,而另一些则没有。如果我们能够预测某种资源的受欢迎程度,这将是有价值的。在这项工作中,我们研究了使用Yelp数据集的食谱流行度预测问题。我们研究了可以提取并有助于提高性能的各种特征。特别是,我们建议对评论进行情感分析,并将情感分数作为特征之一。建立了一个多项式回归模型来预测配方的流行度。实验结果表明,该方法优于基线方法。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Recipe popularity prediction based on the analysis of social reviews
In social based Web services systems, some resources gain popularity while others do not. It would be valuable if we can predict the popularity of certain resource. In this work, we study the recipe popularity prediction problem using the Yelp dataset. We investigate various features that can be extracted and help to improve the performance. In particular, we propose to do the sentiment analysis over the reviews and treat the sentimental scores as one of the features. A polynomial regression model is developed to predict the recipe popularity. The experimental results show that our proposed method outperforms the baseline method.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
784
期刊最新文献
Make decision boundary smoother by transition learning Neurophysiological evidence of the cognitive cycle and the emergence of awareness An efficient implementation of normalized cross-correlation image matching based on pyramid A hybrid recommender system based non-common items in social media "Canderoid": A mobile system to remotely monitor travelling status of the elderly with dementia
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1