Y. Cheng, W. Deng, Yelei Lu, Han Shaopeng, Y. Lv, Gongjian Zeng, Zhou Chao, Dechun Zhang, Shen Xiangling
{"title":"高粱BTx623未成熟胚遗传转化再生体系的建立","authors":"Y. Cheng, W. Deng, Yelei Lu, Han Shaopeng, Y. Lv, Gongjian Zeng, Zhou Chao, Dechun Zhang, Shen Xiangling","doi":"10.5376/mpb.2020.11.0005","DOIUrl":null,"url":null,"abstract":"Sorghum is one of the world's important crops after wheat, rice, maize, and barley. Although the sorghum genome had been well-sequenced, genetic breeding and functional genome research in sorghum cultivar BTx623 is still limited due to the lack of efficient and stable genetic transformation and regeneration system in sequencing. In this study, the immature embryos of sorghum genome-sequencing cultivar BTx623 was used as the explants material, and the bar gene resistant to phosphoglyphosate was used as the screening marker for Agrobacterium -mediated sorghum genetic transformation. By screening the adaptability of callus to different concentrations of phosphoglyphosate, the appropriate concentration of phosphoglyphosate in the genetic transformation of sorghum cultivar BTx623 was determined to be 2.5 mg/L, and BTx623 immature embryo was used as explants to obtain resistant callus. After screening, regenerated plants were obtained by treating resistant callus with 0.0067 mg/L ZNC in regeneration medium. Therefore, this study successfully obtained resistant callus and regenerating plants, and established a genetic transformation and regeneration system in sorghum cultivar BTx623, which may have great significance for functional genome research and genetic breeding in sorghum.","PeriodicalId":32255,"journal":{"name":"Journal of Plant Molecular Breeding","volume":"3 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2020-06-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Establishment of Sorghum BTx623 Immature Embryos Genetic Transformation and Regeneration System\",\"authors\":\"Y. Cheng, W. Deng, Yelei Lu, Han Shaopeng, Y. Lv, Gongjian Zeng, Zhou Chao, Dechun Zhang, Shen Xiangling\",\"doi\":\"10.5376/mpb.2020.11.0005\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Sorghum is one of the world's important crops after wheat, rice, maize, and barley. Although the sorghum genome had been well-sequenced, genetic breeding and functional genome research in sorghum cultivar BTx623 is still limited due to the lack of efficient and stable genetic transformation and regeneration system in sequencing. In this study, the immature embryos of sorghum genome-sequencing cultivar BTx623 was used as the explants material, and the bar gene resistant to phosphoglyphosate was used as the screening marker for Agrobacterium -mediated sorghum genetic transformation. By screening the adaptability of callus to different concentrations of phosphoglyphosate, the appropriate concentration of phosphoglyphosate in the genetic transformation of sorghum cultivar BTx623 was determined to be 2.5 mg/L, and BTx623 immature embryo was used as explants to obtain resistant callus. After screening, regenerated plants were obtained by treating resistant callus with 0.0067 mg/L ZNC in regeneration medium. Therefore, this study successfully obtained resistant callus and regenerating plants, and established a genetic transformation and regeneration system in sorghum cultivar BTx623, which may have great significance for functional genome research and genetic breeding in sorghum.\",\"PeriodicalId\":32255,\"journal\":{\"name\":\"Journal of Plant Molecular Breeding\",\"volume\":\"3 1\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2020-06-09\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Plant Molecular Breeding\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.5376/mpb.2020.11.0005\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Plant Molecular Breeding","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.5376/mpb.2020.11.0005","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Establishment of Sorghum BTx623 Immature Embryos Genetic Transformation and Regeneration System
Sorghum is one of the world's important crops after wheat, rice, maize, and barley. Although the sorghum genome had been well-sequenced, genetic breeding and functional genome research in sorghum cultivar BTx623 is still limited due to the lack of efficient and stable genetic transformation and regeneration system in sequencing. In this study, the immature embryos of sorghum genome-sequencing cultivar BTx623 was used as the explants material, and the bar gene resistant to phosphoglyphosate was used as the screening marker for Agrobacterium -mediated sorghum genetic transformation. By screening the adaptability of callus to different concentrations of phosphoglyphosate, the appropriate concentration of phosphoglyphosate in the genetic transformation of sorghum cultivar BTx623 was determined to be 2.5 mg/L, and BTx623 immature embryo was used as explants to obtain resistant callus. After screening, regenerated plants were obtained by treating resistant callus with 0.0067 mg/L ZNC in regeneration medium. Therefore, this study successfully obtained resistant callus and regenerating plants, and established a genetic transformation and regeneration system in sorghum cultivar BTx623, which may have great significance for functional genome research and genetic breeding in sorghum.