增量数据的渐进实体解析

Leonardo Gazzarri, Melanie Herschel
{"title":"增量数据的渐进实体解析","authors":"Leonardo Gazzarri, Melanie Herschel","doi":"10.48786/edbt.2023.07","DOIUrl":null,"url":null,"abstract":"Entity Resolution (ER) algorithms identify entity profiles corresponding to the same real-world entity among one or multiple data sets. Modern challenges for ER are posed by volume, variety, and velocity that characterize Big Data. While progressive ER aims to efficiently solve the problem under time constraints by prioritizing useful work over superfluous work, incremental ER aims to incrementally produce results as new data increments come in. This paper presents algorithms that combine these two approaches in the context of streaming and heterogeneous data. The overall goal is to maximize the chances to spot duplicates to a given entity profile in a moment closest to its arrival time (early quality), without relying on any schema information, while being sufficiently efficient to process large volumes of fast streaming data without compromising the eventual quality (by cutting too many corners for efficiency). Experiments validate that our algorithms are the first to support incremental and progressive ER and, compared to state-of-the-art incremental approaches, improve early quality, eventual quality, and system efficiency by progressively and adaptively performing the unexecuted comparisons that are more likely to match when waiting for the next stream input increment.","PeriodicalId":88813,"journal":{"name":"Advances in database technology : proceedings. International Conference on Extending Database Technology","volume":"37 1","pages":"80-91"},"PeriodicalIF":0.0000,"publicationDate":"2023-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":"{\"title\":\"Progressive Entity Resolution over Incremental Data\",\"authors\":\"Leonardo Gazzarri, Melanie Herschel\",\"doi\":\"10.48786/edbt.2023.07\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Entity Resolution (ER) algorithms identify entity profiles corresponding to the same real-world entity among one or multiple data sets. Modern challenges for ER are posed by volume, variety, and velocity that characterize Big Data. While progressive ER aims to efficiently solve the problem under time constraints by prioritizing useful work over superfluous work, incremental ER aims to incrementally produce results as new data increments come in. This paper presents algorithms that combine these two approaches in the context of streaming and heterogeneous data. The overall goal is to maximize the chances to spot duplicates to a given entity profile in a moment closest to its arrival time (early quality), without relying on any schema information, while being sufficiently efficient to process large volumes of fast streaming data without compromising the eventual quality (by cutting too many corners for efficiency). Experiments validate that our algorithms are the first to support incremental and progressive ER and, compared to state-of-the-art incremental approaches, improve early quality, eventual quality, and system efficiency by progressively and adaptively performing the unexecuted comparisons that are more likely to match when waiting for the next stream input increment.\",\"PeriodicalId\":88813,\"journal\":{\"name\":\"Advances in database technology : proceedings. International Conference on Extending Database Technology\",\"volume\":\"37 1\",\"pages\":\"80-91\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2023-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"3\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Advances in database technology : proceedings. International Conference on Extending Database Technology\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.48786/edbt.2023.07\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Advances in database technology : proceedings. International Conference on Extending Database Technology","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.48786/edbt.2023.07","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 3

摘要

实体解析(ER)算法在一个或多个数据集中识别对应于同一个现实世界实体的实体配置文件。现代ER面临的挑战是大数据的数量、种类和速度。渐进式ER的目标是通过将有用的工作优先于多余的工作来有效地解决时间限制下的问题,而增量式ER的目标是随着新数据的增加而逐步产生结果。本文提出了在流数据和异构数据环境下结合这两种方法的算法。总体目标是在最接近到达时间(早期质量)的时刻最大限度地发现给定实体配置文件的副本,而不依赖于任何模式信息,同时足够有效地处理大量快速流数据,而不会损害最终质量(通过为效率而走太多弯路)。实验证实,我们的算法是第一个支持增量和渐进式ER的算法,与最先进的增量方法相比,通过逐步和自适应地执行未执行的比较,提高了早期质量、最终质量和系统效率,这些比较在等待下一个流输入增量时更有可能匹配。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Progressive Entity Resolution over Incremental Data
Entity Resolution (ER) algorithms identify entity profiles corresponding to the same real-world entity among one or multiple data sets. Modern challenges for ER are posed by volume, variety, and velocity that characterize Big Data. While progressive ER aims to efficiently solve the problem under time constraints by prioritizing useful work over superfluous work, incremental ER aims to incrementally produce results as new data increments come in. This paper presents algorithms that combine these two approaches in the context of streaming and heterogeneous data. The overall goal is to maximize the chances to spot duplicates to a given entity profile in a moment closest to its arrival time (early quality), without relying on any schema information, while being sufficiently efficient to process large volumes of fast streaming data without compromising the eventual quality (by cutting too many corners for efficiency). Experiments validate that our algorithms are the first to support incremental and progressive ER and, compared to state-of-the-art incremental approaches, improve early quality, eventual quality, and system efficiency by progressively and adaptively performing the unexecuted comparisons that are more likely to match when waiting for the next stream input increment.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Computing Generic Abstractions from Application Datasets Fair Spatial Indexing: A paradigm for Group Spatial Fairness. Data Coverage for Detecting Representation Bias in Image Datasets: A Crowdsourcing Approach Auditing for Spatial Fairness TransEdge: Supporting Efficient Read Queries Across Untrusted Edge Nodes
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1