用于油田化学品缓释的新型纳米胶囊

Al-Jabri Nouf Mohammed, Yun-Min Chang
{"title":"用于油田化学品缓释的新型纳米胶囊","authors":"Al-Jabri Nouf Mohammed, Yun-Min Chang","doi":"10.2118/194696-MS","DOIUrl":null,"url":null,"abstract":"\n Chemicals in oil fields have shown a great potential for enhancing/improving oil recovery (EOR/IOR) beyond waterflood baseline. The objectives of this work are: (1) to develop a cost-effective method to deliver chemicals to deeper layers in reservoirs compared to conventional chemical operations, (2) to synthesize nano-capsules with improved stability under typical reservoir temperatures (80-110 °C), and (3) to demonstrate the gradual release of EOR/IOR chemicals over time at a given temperature within the above range. Multiple slow-release technologies were developed; (1) Nano-salt (2) liposomes and (3) nano-capsules. In the first method, nano-size surfactant salt particle that has a limited solubility can traverse the reservoir and deliver, over a long period of time, a constant concentration of surfactant was synthesized. In addition to surfactant salts, surfactant-loaded nano-capsules were synthesized by dissolving a known lipid formula in 20.0 mL chloroform, then, evaporating the solvent to form a dried lipid film. Acid nano-capsules for improving oil recovery operations were synthesized using In situ and interfacial polymerization. Scanning electron microscopy, an optical microscopy, dynamic light scattering, Inductive coupled plasma (ICP-AES), pH and surfactant electrodes were used to characterize the nano-capsules and dispersion. To assist the nano-platforms slow-release profile and the particles stability under reservoir conditions, the samples were incubated in oven at 95 °C. The nano-capsules’ slow-release and stability were monitored for several days. The liposomes contain 11 wt. % of PETRONATE® EOR2095 with particles’ average size of ~80 nm, the surfactant released was gradually increased over sixty hours. The acid nano-capsules contain 15 wt. % acid precursor with particles’ average size of 200 nm. The capsules release versus time curve showed that the release occurred when the temperature reached 95 °C, indicating that nano-capsules’ release is triggered by the temperature increment. The pH versus time release curve exhibits a gradual decreasing in the pH over six day indicating the acid precursor hydrolysis at 95 °C. Our results demonstrate the possibility of improving current chemicals flood via nano-encapsulation. The slow release technology may bring new potentials to the current hydrocarbon production operations.","PeriodicalId":11031,"journal":{"name":"Day 4 Thu, March 21, 2019","volume":"5 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2019-03-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Novel Nano-Capsules for Oil Field Chemicals Delivery and Slow Release\",\"authors\":\"Al-Jabri Nouf Mohammed, Yun-Min Chang\",\"doi\":\"10.2118/194696-MS\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"\\n Chemicals in oil fields have shown a great potential for enhancing/improving oil recovery (EOR/IOR) beyond waterflood baseline. The objectives of this work are: (1) to develop a cost-effective method to deliver chemicals to deeper layers in reservoirs compared to conventional chemical operations, (2) to synthesize nano-capsules with improved stability under typical reservoir temperatures (80-110 °C), and (3) to demonstrate the gradual release of EOR/IOR chemicals over time at a given temperature within the above range. Multiple slow-release technologies were developed; (1) Nano-salt (2) liposomes and (3) nano-capsules. In the first method, nano-size surfactant salt particle that has a limited solubility can traverse the reservoir and deliver, over a long period of time, a constant concentration of surfactant was synthesized. In addition to surfactant salts, surfactant-loaded nano-capsules were synthesized by dissolving a known lipid formula in 20.0 mL chloroform, then, evaporating the solvent to form a dried lipid film. Acid nano-capsules for improving oil recovery operations were synthesized using In situ and interfacial polymerization. Scanning electron microscopy, an optical microscopy, dynamic light scattering, Inductive coupled plasma (ICP-AES), pH and surfactant electrodes were used to characterize the nano-capsules and dispersion. To assist the nano-platforms slow-release profile and the particles stability under reservoir conditions, the samples were incubated in oven at 95 °C. The nano-capsules’ slow-release and stability were monitored for several days. The liposomes contain 11 wt. % of PETRONATE® EOR2095 with particles’ average size of ~80 nm, the surfactant released was gradually increased over sixty hours. The acid nano-capsules contain 15 wt. % acid precursor with particles’ average size of 200 nm. The capsules release versus time curve showed that the release occurred when the temperature reached 95 °C, indicating that nano-capsules’ release is triggered by the temperature increment. The pH versus time release curve exhibits a gradual decreasing in the pH over six day indicating the acid precursor hydrolysis at 95 °C. Our results demonstrate the possibility of improving current chemicals flood via nano-encapsulation. The slow release technology may bring new potentials to the current hydrocarbon production operations.\",\"PeriodicalId\":11031,\"journal\":{\"name\":\"Day 4 Thu, March 21, 2019\",\"volume\":\"5 1\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2019-03-15\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Day 4 Thu, March 21, 2019\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.2118/194696-MS\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Day 4 Thu, March 21, 2019","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.2118/194696-MS","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

油田中的化学物质在提高水驱基线以外的采收率(EOR/IOR)方面显示出巨大的潜力。这项工作的目标是:(1)与常规化学作业相比,开发一种具有成本效益的方法,将化学物质输送到储层的更深层;(2)在典型储层温度(80-110°C)下合成具有更高稳定性的纳米胶囊;(3)在上述范围内的给定温度下,随着时间的推移,EOR/IOR化学物质会逐渐释放。开发了多种缓释技术;(1)纳米盐(2)脂质体和(3)纳米胶囊。在第一种方法中,具有有限溶解度的纳米级表面活性剂盐颗粒可以穿过储层,并在很长一段时间内合成出恒定浓度的表面活性剂。除表面活性剂盐外,负载表面活性剂的纳米胶囊通过将已知的脂质配方溶解在20.0 mL氯仿中,然后蒸发溶剂形成干燥的脂质膜来合成。采用原位聚合和界面聚合法制备了提高采收率的酸性纳米胶囊。采用扫描电镜、光学显微镜、动态光散射、电感耦合等离子体(ICP-AES)、pH和表面活性剂电极对纳米胶囊及其分散性进行了表征。为了提高纳米平台的缓释性能和储层条件下颗粒的稳定性,样品在95°C的烘箱中孵育。对纳米胶囊的缓释和稳定性进行了数天的监测。脂质体中PETRONATE®EOR2095的含量为11wt . %,颗粒的平均尺寸为~ 80nm,表面活性剂的释放在60小时内逐渐增加。酸纳米胶囊含有15wt . %的酸前体,颗粒平均大小为200nm。纳米胶囊的释放随时间变化曲线表明,当温度达到95℃时,纳米胶囊发生释放,表明纳米胶囊的释放是由温度的升高引起的。pH随时间的释放曲线显示pH在6天内逐渐下降,表明酸前体在95℃下水解。我们的研究结果证明了通过纳米封装改善现有化学品泛滥的可能性。缓释技术可能为当前的油气生产带来新的潜力。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Novel Nano-Capsules for Oil Field Chemicals Delivery and Slow Release
Chemicals in oil fields have shown a great potential for enhancing/improving oil recovery (EOR/IOR) beyond waterflood baseline. The objectives of this work are: (1) to develop a cost-effective method to deliver chemicals to deeper layers in reservoirs compared to conventional chemical operations, (2) to synthesize nano-capsules with improved stability under typical reservoir temperatures (80-110 °C), and (3) to demonstrate the gradual release of EOR/IOR chemicals over time at a given temperature within the above range. Multiple slow-release technologies were developed; (1) Nano-salt (2) liposomes and (3) nano-capsules. In the first method, nano-size surfactant salt particle that has a limited solubility can traverse the reservoir and deliver, over a long period of time, a constant concentration of surfactant was synthesized. In addition to surfactant salts, surfactant-loaded nano-capsules were synthesized by dissolving a known lipid formula in 20.0 mL chloroform, then, evaporating the solvent to form a dried lipid film. Acid nano-capsules for improving oil recovery operations were synthesized using In situ and interfacial polymerization. Scanning electron microscopy, an optical microscopy, dynamic light scattering, Inductive coupled plasma (ICP-AES), pH and surfactant electrodes were used to characterize the nano-capsules and dispersion. To assist the nano-platforms slow-release profile and the particles stability under reservoir conditions, the samples were incubated in oven at 95 °C. The nano-capsules’ slow-release and stability were monitored for several days. The liposomes contain 11 wt. % of PETRONATE® EOR2095 with particles’ average size of ~80 nm, the surfactant released was gradually increased over sixty hours. The acid nano-capsules contain 15 wt. % acid precursor with particles’ average size of 200 nm. The capsules release versus time curve showed that the release occurred when the temperature reached 95 °C, indicating that nano-capsules’ release is triggered by the temperature increment. The pH versus time release curve exhibits a gradual decreasing in the pH over six day indicating the acid precursor hydrolysis at 95 °C. Our results demonstrate the possibility of improving current chemicals flood via nano-encapsulation. The slow release technology may bring new potentials to the current hydrocarbon production operations.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Size distribution analysis of microstickies treated by enzyme mixtures in papermaking whitewater Evaluating hardness and the S-test Controllable anisotropic properties of wet-laid hydroentangled nonwovens A study of the softness of household tissues using a tissue softness analyzer and hand-felt panels A REVIEW OF MULTI HOMING AND ITS ASSOCIATED RESEARCH AREAS ALONG WITH INTERNET OF THINGS (IOT)
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1