Pradip D. Patil, R. Parlikar, M. V. Khedkar, A. V. Raut, K. M. Jadhav, R. Kavade
{"title":"溶胶-凝胶合成,结构表征,光催化降解制氢和钇取代钴锌铁氧体纳米颗粒的紫外吸收","authors":"Pradip D. Patil, R. Parlikar, M. V. Khedkar, A. V. Raut, K. M. Jadhav, R. Kavade","doi":"10.1063/5.0061089","DOIUrl":null,"url":null,"abstract":"An effect of trivalent yttrium ion substitution on the structural properties of Co-Zn ferrite has been studied after the fabrication of Co1-xZnxFe2-yYyO4 nanoparticles at a typical concentration (x=0.3, y=0.2). The synthesis of Co1-xZnxFe2-yYyO4 nanoparticles was carried out via sol-gel auto-combustion technique using the citric acid as a fuel with a metal nitrate to citrate ratio of 1:3. X-ray diffraction studies of Co1-xZnxFe2-yYyO4 nanoparticles were carried out to study the structural parameter and phase purity. In this study, the XRD pattern revealed the presence of Bragg’s reflections belongs to the cubic spinel structure. The Y3+ ion doping creates additional phases in the Co-Zn ferrite, which plays a crucial role in controlling the physicochemical properties of the typical samples. The crystallite size (t) was estimated using Debye-Scherrer’s formula and reported to be decreased as a result of Y3+ ionic exchange as per the expectations. Y3+ ion substituted Co-Zn ferrite (with Y content = 0.02 per formula unit) may be considered for an attenuation application in the particular range. Visible range light was used for the photocatalytic degradation measurements using methylene Blue dye. In particular, an enhanced degradation efficiency of Co1-xZnxFe2-yYyO4 nanoparticles was observed. The UV-vis spectroscopic studies were performed and reported in the wavelength range 220 400 nm to check the absorbance of methylene blue dye at different time intervals.","PeriodicalId":18837,"journal":{"name":"NATIONAL CONFERENCE ON PHYSICS AND CHEMISTRY OF MATERIALS: NCPCM2020","volume":"2013 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2021-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Sol-Gel synthesis, structural characterizations, photo- catalytic degradation for H2 production and UV-Absorption of yttrium-substituted Co-Zn ferrite nanoparticles\",\"authors\":\"Pradip D. Patil, R. Parlikar, M. V. Khedkar, A. V. Raut, K. M. Jadhav, R. Kavade\",\"doi\":\"10.1063/5.0061089\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"An effect of trivalent yttrium ion substitution on the structural properties of Co-Zn ferrite has been studied after the fabrication of Co1-xZnxFe2-yYyO4 nanoparticles at a typical concentration (x=0.3, y=0.2). The synthesis of Co1-xZnxFe2-yYyO4 nanoparticles was carried out via sol-gel auto-combustion technique using the citric acid as a fuel with a metal nitrate to citrate ratio of 1:3. X-ray diffraction studies of Co1-xZnxFe2-yYyO4 nanoparticles were carried out to study the structural parameter and phase purity. In this study, the XRD pattern revealed the presence of Bragg’s reflections belongs to the cubic spinel structure. The Y3+ ion doping creates additional phases in the Co-Zn ferrite, which plays a crucial role in controlling the physicochemical properties of the typical samples. The crystallite size (t) was estimated using Debye-Scherrer’s formula and reported to be decreased as a result of Y3+ ionic exchange as per the expectations. Y3+ ion substituted Co-Zn ferrite (with Y content = 0.02 per formula unit) may be considered for an attenuation application in the particular range. Visible range light was used for the photocatalytic degradation measurements using methylene Blue dye. In particular, an enhanced degradation efficiency of Co1-xZnxFe2-yYyO4 nanoparticles was observed. The UV-vis spectroscopic studies were performed and reported in the wavelength range 220 400 nm to check the absorbance of methylene blue dye at different time intervals.\",\"PeriodicalId\":18837,\"journal\":{\"name\":\"NATIONAL CONFERENCE ON PHYSICS AND CHEMISTRY OF MATERIALS: NCPCM2020\",\"volume\":\"2013 1\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2021-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"NATIONAL CONFERENCE ON PHYSICS AND CHEMISTRY OF MATERIALS: NCPCM2020\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1063/5.0061089\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"NATIONAL CONFERENCE ON PHYSICS AND CHEMISTRY OF MATERIALS: NCPCM2020","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1063/5.0061089","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Sol-Gel synthesis, structural characterizations, photo- catalytic degradation for H2 production and UV-Absorption of yttrium-substituted Co-Zn ferrite nanoparticles
An effect of trivalent yttrium ion substitution on the structural properties of Co-Zn ferrite has been studied after the fabrication of Co1-xZnxFe2-yYyO4 nanoparticles at a typical concentration (x=0.3, y=0.2). The synthesis of Co1-xZnxFe2-yYyO4 nanoparticles was carried out via sol-gel auto-combustion technique using the citric acid as a fuel with a metal nitrate to citrate ratio of 1:3. X-ray diffraction studies of Co1-xZnxFe2-yYyO4 nanoparticles were carried out to study the structural parameter and phase purity. In this study, the XRD pattern revealed the presence of Bragg’s reflections belongs to the cubic spinel structure. The Y3+ ion doping creates additional phases in the Co-Zn ferrite, which plays a crucial role in controlling the physicochemical properties of the typical samples. The crystallite size (t) was estimated using Debye-Scherrer’s formula and reported to be decreased as a result of Y3+ ionic exchange as per the expectations. Y3+ ion substituted Co-Zn ferrite (with Y content = 0.02 per formula unit) may be considered for an attenuation application in the particular range. Visible range light was used for the photocatalytic degradation measurements using methylene Blue dye. In particular, an enhanced degradation efficiency of Co1-xZnxFe2-yYyO4 nanoparticles was observed. The UV-vis spectroscopic studies were performed and reported in the wavelength range 220 400 nm to check the absorbance of methylene blue dye at different time intervals.