{"title":"冠状病毒传播动力学中的嵌入隔离、接触者追踪和隔离——以武汉市COVID-19为例","authors":"Miao Yu, Zhongsheng Hua","doi":"10.1287/serv.2021.0291","DOIUrl":null,"url":null,"abstract":"Coronaviruses have caused multiple global pandemics. As an emerging epidemic, the coronavirus disease relies on nonpharmacological interventions to control its spread. However, the specific effects of these interventions are unknown. To evaluate their effects, we extend the susceptible–latent–infectious–recovered model to include suspected cases, confirmed cases, and their contacts and to embed isolation, close contact tracing, and quarantine into transmission dynamics. The model simplifies the population into two parts: the undiscovered part (where the virus spreads freely—the extent of freedom is determined by the strength of social distancing policy) and the discovered part (where the cases are incompletely isolated or quarantined). Through the isolation of the index case (suspected or confirmed case) and the subsequent tracing and quarantine of its close contacts, the infections flow from the undiscovered part to the discovered part. In our case study, multisource data of the novel coronavirus SARS-CoV-2 (COVID-19) in Wuhan were collected to validate the model, the parameters were calibrated based on the prediction of the actual number of infections, and then the time-varying effective reproduction number was obtained to measure the transmissibility of COVID-19 in Wuhan, revealing the timeliness and lag effect of the nonpharmacological interventions adopted there. Finally, we simulated the situation in the absence of a strict social distancing policy. Results show that the current efforts of isolation, close contact tracing, and quarantine can take the epidemic curve to the turning point, but the epidemic could be far from over; there were still 4,035 infected people, and 1,584 latent people in the undiscovered part on March 11, 2020, when the epidemic was actually over with a strict social distancing policy.","PeriodicalId":1,"journal":{"name":"Accounts of Chemical Research","volume":null,"pages":null},"PeriodicalIF":16.4000,"publicationDate":"2021-12-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":"{\"title\":\"Embedding Isolation, Contact Tracing, and Quarantine in Transmission Dynamics of the Coronavirus Epidemic—A Case Study of COVID-19 in Wuhan\",\"authors\":\"Miao Yu, Zhongsheng Hua\",\"doi\":\"10.1287/serv.2021.0291\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Coronaviruses have caused multiple global pandemics. As an emerging epidemic, the coronavirus disease relies on nonpharmacological interventions to control its spread. However, the specific effects of these interventions are unknown. To evaluate their effects, we extend the susceptible–latent–infectious–recovered model to include suspected cases, confirmed cases, and their contacts and to embed isolation, close contact tracing, and quarantine into transmission dynamics. The model simplifies the population into two parts: the undiscovered part (where the virus spreads freely—the extent of freedom is determined by the strength of social distancing policy) and the discovered part (where the cases are incompletely isolated or quarantined). Through the isolation of the index case (suspected or confirmed case) and the subsequent tracing and quarantine of its close contacts, the infections flow from the undiscovered part to the discovered part. In our case study, multisource data of the novel coronavirus SARS-CoV-2 (COVID-19) in Wuhan were collected to validate the model, the parameters were calibrated based on the prediction of the actual number of infections, and then the time-varying effective reproduction number was obtained to measure the transmissibility of COVID-19 in Wuhan, revealing the timeliness and lag effect of the nonpharmacological interventions adopted there. Finally, we simulated the situation in the absence of a strict social distancing policy. Results show that the current efforts of isolation, close contact tracing, and quarantine can take the epidemic curve to the turning point, but the epidemic could be far from over; there were still 4,035 infected people, and 1,584 latent people in the undiscovered part on March 11, 2020, when the epidemic was actually over with a strict social distancing policy.\",\"PeriodicalId\":1,\"journal\":{\"name\":\"Accounts of Chemical Research\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":16.4000,\"publicationDate\":\"2021-12-29\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"2\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Accounts of Chemical Research\",\"FirstCategoryId\":\"91\",\"ListUrlMain\":\"https://doi.org/10.1287/serv.2021.0291\",\"RegionNum\":1,\"RegionCategory\":\"化学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"CHEMISTRY, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Accounts of Chemical Research","FirstCategoryId":"91","ListUrlMain":"https://doi.org/10.1287/serv.2021.0291","RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
Embedding Isolation, Contact Tracing, and Quarantine in Transmission Dynamics of the Coronavirus Epidemic—A Case Study of COVID-19 in Wuhan
Coronaviruses have caused multiple global pandemics. As an emerging epidemic, the coronavirus disease relies on nonpharmacological interventions to control its spread. However, the specific effects of these interventions are unknown. To evaluate their effects, we extend the susceptible–latent–infectious–recovered model to include suspected cases, confirmed cases, and their contacts and to embed isolation, close contact tracing, and quarantine into transmission dynamics. The model simplifies the population into two parts: the undiscovered part (where the virus spreads freely—the extent of freedom is determined by the strength of social distancing policy) and the discovered part (where the cases are incompletely isolated or quarantined). Through the isolation of the index case (suspected or confirmed case) and the subsequent tracing and quarantine of its close contacts, the infections flow from the undiscovered part to the discovered part. In our case study, multisource data of the novel coronavirus SARS-CoV-2 (COVID-19) in Wuhan were collected to validate the model, the parameters were calibrated based on the prediction of the actual number of infections, and then the time-varying effective reproduction number was obtained to measure the transmissibility of COVID-19 in Wuhan, revealing the timeliness and lag effect of the nonpharmacological interventions adopted there. Finally, we simulated the situation in the absence of a strict social distancing policy. Results show that the current efforts of isolation, close contact tracing, and quarantine can take the epidemic curve to the turning point, but the epidemic could be far from over; there were still 4,035 infected people, and 1,584 latent people in the undiscovered part on March 11, 2020, when the epidemic was actually over with a strict social distancing policy.
期刊介绍:
Accounts of Chemical Research presents short, concise and critical articles offering easy-to-read overviews of basic research and applications in all areas of chemistry and biochemistry. These short reviews focus on research from the author’s own laboratory and are designed to teach the reader about a research project. In addition, Accounts of Chemical Research publishes commentaries that give an informed opinion on a current research problem. Special Issues online are devoted to a single topic of unusual activity and significance.
Accounts of Chemical Research replaces the traditional article abstract with an article "Conspectus." These entries synopsize the research affording the reader a closer look at the content and significance of an article. Through this provision of a more detailed description of the article contents, the Conspectus enhances the article's discoverability by search engines and the exposure for the research.