{"title":"大功率射频芯片阵列用氮化铝HTCC衬底的嵌入式微流控冷却","authors":"Yupu Ma, T. Wei, Jiyu Qian, Jian Peng","doi":"10.1115/1.4062400","DOIUrl":null,"url":null,"abstract":"\n Radio frequency (RF) electronics are developing towards high power, high integration, and high-power density, resulting in a continuous increase in heat flux. The traditional high-power RF package, which is usually composed of aluminum nitride (AlN) substrate, aluminum silicon housing shell, and aluminum alloy cold plate, exhibits poor heat dissipation ability and high thickness due to excessive interfaces and a long thermal conduction path. In this paper, aimed at improving heat dissipation ability and reducing the thickness of RF electronics, the microchannel was transferred from the cold plate to the AlN HTCC substrate which plays the role of electrical connection, structural support, and liquid cooling cold plate. The embedded AlN microchannel cooler was firstly designed. Then, a prototype of the AlN substrate with 64 simulated chip arrays and microchannels was fabricated and the thermal performance was evaluated using an experimental setup. Finally, the thermal performances of the proposed and traditional cooler were compared using a CFD simulation. The results indicated that the proposed embedded cooling structure could enhance the heat flux dissipation ability by 61% and reduce the packaging thickness by 40% compared with the traditional cooling structure.","PeriodicalId":17404,"journal":{"name":"Journal of Thermal Science and Engineering Applications","volume":"6 1","pages":""},"PeriodicalIF":1.6000,"publicationDate":"2023-04-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Embedded Microfluidic Cooling in Aluminum Nitride (AlN) HTCC Substrate for High-power RF Chip Array\",\"authors\":\"Yupu Ma, T. Wei, Jiyu Qian, Jian Peng\",\"doi\":\"10.1115/1.4062400\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"\\n Radio frequency (RF) electronics are developing towards high power, high integration, and high-power density, resulting in a continuous increase in heat flux. The traditional high-power RF package, which is usually composed of aluminum nitride (AlN) substrate, aluminum silicon housing shell, and aluminum alloy cold plate, exhibits poor heat dissipation ability and high thickness due to excessive interfaces and a long thermal conduction path. In this paper, aimed at improving heat dissipation ability and reducing the thickness of RF electronics, the microchannel was transferred from the cold plate to the AlN HTCC substrate which plays the role of electrical connection, structural support, and liquid cooling cold plate. The embedded AlN microchannel cooler was firstly designed. Then, a prototype of the AlN substrate with 64 simulated chip arrays and microchannels was fabricated and the thermal performance was evaluated using an experimental setup. Finally, the thermal performances of the proposed and traditional cooler were compared using a CFD simulation. The results indicated that the proposed embedded cooling structure could enhance the heat flux dissipation ability by 61% and reduce the packaging thickness by 40% compared with the traditional cooling structure.\",\"PeriodicalId\":17404,\"journal\":{\"name\":\"Journal of Thermal Science and Engineering Applications\",\"volume\":\"6 1\",\"pages\":\"\"},\"PeriodicalIF\":1.6000,\"publicationDate\":\"2023-04-21\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Thermal Science and Engineering Applications\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://doi.org/10.1115/1.4062400\",\"RegionNum\":4,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"ENGINEERING, MECHANICAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Thermal Science and Engineering Applications","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1115/1.4062400","RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"ENGINEERING, MECHANICAL","Score":null,"Total":0}
Embedded Microfluidic Cooling in Aluminum Nitride (AlN) HTCC Substrate for High-power RF Chip Array
Radio frequency (RF) electronics are developing towards high power, high integration, and high-power density, resulting in a continuous increase in heat flux. The traditional high-power RF package, which is usually composed of aluminum nitride (AlN) substrate, aluminum silicon housing shell, and aluminum alloy cold plate, exhibits poor heat dissipation ability and high thickness due to excessive interfaces and a long thermal conduction path. In this paper, aimed at improving heat dissipation ability and reducing the thickness of RF electronics, the microchannel was transferred from the cold plate to the AlN HTCC substrate which plays the role of electrical connection, structural support, and liquid cooling cold plate. The embedded AlN microchannel cooler was firstly designed. Then, a prototype of the AlN substrate with 64 simulated chip arrays and microchannels was fabricated and the thermal performance was evaluated using an experimental setup. Finally, the thermal performances of the proposed and traditional cooler were compared using a CFD simulation. The results indicated that the proposed embedded cooling structure could enhance the heat flux dissipation ability by 61% and reduce the packaging thickness by 40% compared with the traditional cooling structure.
期刊介绍:
Applications in: Aerospace systems; Gas turbines; Biotechnology; Defense systems; Electronic and photonic equipment; Energy systems; Manufacturing; Refrigeration and air conditioning; Homeland security systems; Micro- and nanoscale devices; Petrochemical processing; Medical systems; Energy efficiency; Sustainability; Solar systems; Combustion systems