Elahe Sayyadi, A. Mesbahi, R. Zamiri, Farshad Seyed Nejad
{"title":"基于蒙特卡罗研究,设计了一种新型的多纳米粒子负载纳米复合材料,用于增强诊断x射线能量范围内的衰减系数","authors":"Elahe Sayyadi, A. Mesbahi, R. Zamiri, Farshad Seyed Nejad","doi":"10.2478/pjmpe-2021-0033","DOIUrl":null,"url":null,"abstract":"Abstract Introduction: The present study aimed to investigate the radiation protection properties of silicon-based composites doped with nano-sized Bi2O3, PbO, Sm2O3, Gd2O3, WO3, and IrO2 particles. Radiation shielding properties of Sm2O3 and IrO2 nanoparticles were investigated for the first time in the current study. Material and methods: The MCNPX (2.7.0) Monte Carlo code was utilized to calculate the linear attenuation coefficients of single and multi-nano structured composites over the X-ray energy range of 10–140 keV. Homogenous distribution of spherical nanoparticles with a diameter of 100 nm in a silicon rubber matrix was simulated. The narrow beam geometry was used to calculate the photon flux after attenuation by designed nanocomposites. Results: Based on results obtained for single nanoparticle composites, three combinations of different nano-sized fillers Sm2O3+WO3+Bi2O3, Gd2O3+WO3+Bi2O3, and Sm2O3+WO3+PbO were selected, and their shielding properties were estimated. In the energy range of 20-60 keV Sm2O3 and Gd2O3 nanoparticles, in 70-100 keV energy range WO3 and for photons energy higher than 90 keV, PbO and Bi2O3 nanoparticles showed higher attenuation. Despite its higher density, IrO2 had lower attenuation compared to other nanocomposites. The results showed that the nanocomposite containing Sm2O3, WO3, and Bi2O3 nanoparticles provided better shielding among the studied samples. Conclusions: All studied multi-nanoparticle nanocomposites provided optimum shielding properties and almost 8% higher attenuation relative to single nano-based composites over a wide range of photon energy used in diagnostic radiology. Application of these new composites is recommended in radiation protection. Further experimental studies are suggested to validate our findings.","PeriodicalId":53955,"journal":{"name":"Polish Journal of Medical Physics and Engineering","volume":"5 1","pages":"279 - 289"},"PeriodicalIF":0.7000,"publicationDate":"2021-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":"{\"title\":\"A comprehensive Monte Carlo study to design a novel multi-nanoparticle loaded nanocomposites for augmentation of attenuation coefficient in the energy range of diagnostic X-rays\",\"authors\":\"Elahe Sayyadi, A. Mesbahi, R. Zamiri, Farshad Seyed Nejad\",\"doi\":\"10.2478/pjmpe-2021-0033\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Abstract Introduction: The present study aimed to investigate the radiation protection properties of silicon-based composites doped with nano-sized Bi2O3, PbO, Sm2O3, Gd2O3, WO3, and IrO2 particles. Radiation shielding properties of Sm2O3 and IrO2 nanoparticles were investigated for the first time in the current study. Material and methods: The MCNPX (2.7.0) Monte Carlo code was utilized to calculate the linear attenuation coefficients of single and multi-nano structured composites over the X-ray energy range of 10–140 keV. Homogenous distribution of spherical nanoparticles with a diameter of 100 nm in a silicon rubber matrix was simulated. The narrow beam geometry was used to calculate the photon flux after attenuation by designed nanocomposites. Results: Based on results obtained for single nanoparticle composites, three combinations of different nano-sized fillers Sm2O3+WO3+Bi2O3, Gd2O3+WO3+Bi2O3, and Sm2O3+WO3+PbO were selected, and their shielding properties were estimated. In the energy range of 20-60 keV Sm2O3 and Gd2O3 nanoparticles, in 70-100 keV energy range WO3 and for photons energy higher than 90 keV, PbO and Bi2O3 nanoparticles showed higher attenuation. Despite its higher density, IrO2 had lower attenuation compared to other nanocomposites. The results showed that the nanocomposite containing Sm2O3, WO3, and Bi2O3 nanoparticles provided better shielding among the studied samples. Conclusions: All studied multi-nanoparticle nanocomposites provided optimum shielding properties and almost 8% higher attenuation relative to single nano-based composites over a wide range of photon energy used in diagnostic radiology. Application of these new composites is recommended in radiation protection. Further experimental studies are suggested to validate our findings.\",\"PeriodicalId\":53955,\"journal\":{\"name\":\"Polish Journal of Medical Physics and Engineering\",\"volume\":\"5 1\",\"pages\":\"279 - 289\"},\"PeriodicalIF\":0.7000,\"publicationDate\":\"2021-12-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"3\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Polish Journal of Medical Physics and Engineering\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.2478/pjmpe-2021-0033\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"RADIOLOGY, NUCLEAR MEDICINE & MEDICAL IMAGING\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Polish Journal of Medical Physics and Engineering","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.2478/pjmpe-2021-0033","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"RADIOLOGY, NUCLEAR MEDICINE & MEDICAL IMAGING","Score":null,"Total":0}
A comprehensive Monte Carlo study to design a novel multi-nanoparticle loaded nanocomposites for augmentation of attenuation coefficient in the energy range of diagnostic X-rays
Abstract Introduction: The present study aimed to investigate the radiation protection properties of silicon-based composites doped with nano-sized Bi2O3, PbO, Sm2O3, Gd2O3, WO3, and IrO2 particles. Radiation shielding properties of Sm2O3 and IrO2 nanoparticles were investigated for the first time in the current study. Material and methods: The MCNPX (2.7.0) Monte Carlo code was utilized to calculate the linear attenuation coefficients of single and multi-nano structured composites over the X-ray energy range of 10–140 keV. Homogenous distribution of spherical nanoparticles with a diameter of 100 nm in a silicon rubber matrix was simulated. The narrow beam geometry was used to calculate the photon flux after attenuation by designed nanocomposites. Results: Based on results obtained for single nanoparticle composites, three combinations of different nano-sized fillers Sm2O3+WO3+Bi2O3, Gd2O3+WO3+Bi2O3, and Sm2O3+WO3+PbO were selected, and their shielding properties were estimated. In the energy range of 20-60 keV Sm2O3 and Gd2O3 nanoparticles, in 70-100 keV energy range WO3 and for photons energy higher than 90 keV, PbO and Bi2O3 nanoparticles showed higher attenuation. Despite its higher density, IrO2 had lower attenuation compared to other nanocomposites. The results showed that the nanocomposite containing Sm2O3, WO3, and Bi2O3 nanoparticles provided better shielding among the studied samples. Conclusions: All studied multi-nanoparticle nanocomposites provided optimum shielding properties and almost 8% higher attenuation relative to single nano-based composites over a wide range of photon energy used in diagnostic radiology. Application of these new composites is recommended in radiation protection. Further experimental studies are suggested to validate our findings.
期刊介绍:
Polish Journal of Medical Physics and Engineering (PJMPE) (Online ISSN: 1898-0309; Print ISSN: 1425-4689) is an official publication of the Polish Society of Medical Physics. It is a peer-reviewed, open access scientific journal with no publication fees. The issues are published quarterly online. The Journal publishes original contribution in medical physics and biomedical engineering.