一种TESS数据库非对称凌日自动识别算法

M. Vasylenko, Y. Pavlenko, D. Dobrycheva, I. Kulyk, O. Shubina, P. Korsun
{"title":"一种TESS数据库非对称凌日自动识别算法","authors":"M. Vasylenko, Y. Pavlenko, D. Dobrycheva, I. Kulyk, O. Shubina, P. Korsun","doi":"10.1017/S1743921322000023","DOIUrl":null,"url":null,"abstract":"Abstract Currently, the Transiting Exoplanet Survey Satellite (TESS) searches for Earth-size planets around nearby dwarf stars. To identify specific weak variations in the light curves of stars, sophisticated data processing methods and analysis of the light curve shapes should be developed and applied. We report some preliminary results of our project to find and identify minima in the light curves of stars collected by TESS and stored in the MAST (Mikulski Archive for Space Telescopes) database. We developed Python code to process the short-cadence (2-min) TESS PDCSAP (Pre-search Data Conditioning Simple Aperture Photometry) light curves. Our code allows us to create test samples to apply machine learning methods to classify minima in the light curves taking into account their morphological signatures. Our approach will be used to find and analyze some sporadic events in the observed light curves originating from transits of comet-like bodies.","PeriodicalId":20590,"journal":{"name":"Proceedings of the International Astronomical Union","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2021-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"An algorithm for automatic identification of asymmetric transits in the TESS database\",\"authors\":\"M. Vasylenko, Y. Pavlenko, D. Dobrycheva, I. Kulyk, O. Shubina, P. Korsun\",\"doi\":\"10.1017/S1743921322000023\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Abstract Currently, the Transiting Exoplanet Survey Satellite (TESS) searches for Earth-size planets around nearby dwarf stars. To identify specific weak variations in the light curves of stars, sophisticated data processing methods and analysis of the light curve shapes should be developed and applied. We report some preliminary results of our project to find and identify minima in the light curves of stars collected by TESS and stored in the MAST (Mikulski Archive for Space Telescopes) database. We developed Python code to process the short-cadence (2-min) TESS PDCSAP (Pre-search Data Conditioning Simple Aperture Photometry) light curves. Our code allows us to create test samples to apply machine learning methods to classify minima in the light curves taking into account their morphological signatures. Our approach will be used to find and analyze some sporadic events in the observed light curves originating from transits of comet-like bodies.\",\"PeriodicalId\":20590,\"journal\":{\"name\":\"Proceedings of the International Astronomical Union\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2021-10-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Proceedings of the International Astronomical Union\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1017/S1743921322000023\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the International Astronomical Union","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1017/S1743921322000023","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

目前,凌日系外行星巡天卫星(TESS)在附近的矮星周围寻找地球大小的行星。为了识别恒星光曲线的特定微弱变化,需要开发和应用复杂的数据处理方法和光曲线形状分析。我们报告了我们的项目的一些初步结果,该项目旨在寻找和识别由TESS收集并存储在MAST(米库尔斯基空间望远镜档案)数据库中的恒星的光曲线中的极小值。我们开发了Python代码来处理短节奏(2分钟)TESS PDCSAP (Pre-search Data Conditioning Simple Aperture Photometry)光曲线。我们的代码允许我们创建测试样本,以应用机器学习方法对光照曲线中的最小值进行分类,同时考虑到它们的形态特征。我们的方法将用于发现和分析观测到的源自类彗星天体凌日的光曲线中的一些零星事件。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
An algorithm for automatic identification of asymmetric transits in the TESS database
Abstract Currently, the Transiting Exoplanet Survey Satellite (TESS) searches for Earth-size planets around nearby dwarf stars. To identify specific weak variations in the light curves of stars, sophisticated data processing methods and analysis of the light curve shapes should be developed and applied. We report some preliminary results of our project to find and identify minima in the light curves of stars collected by TESS and stored in the MAST (Mikulski Archive for Space Telescopes) database. We developed Python code to process the short-cadence (2-min) TESS PDCSAP (Pre-search Data Conditioning Simple Aperture Photometry) light curves. Our code allows us to create test samples to apply machine learning methods to classify minima in the light curves taking into account their morphological signatures. Our approach will be used to find and analyze some sporadic events in the observed light curves originating from transits of comet-like bodies.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Latitudinal variations of charged dust in co-orbital resonance with Jupiter On the scattering and dynamical evolution of Oort cloud comets caused by a stellar fly-by New results on orbital resonances Dynamics around the binary system (65803) Didymos Noise, friction and the radial-orbit instability in anisotropic stellar systems: stochastic N–body simulations
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1