基于混合推荐算法的大学英语MOOC推荐模型研究

IF 0.7 Q3 COMPUTER SCIENCE, THEORY & METHODS International Journal of Advanced Computer Science and Applications Pub Date : 2023-01-01 DOI:10.14569/ijacsa.2023.0140464
Yifang Ding, J. Hao
{"title":"基于混合推荐算法的大学英语MOOC推荐模型研究","authors":"Yifang Ding, J. Hao","doi":"10.14569/ijacsa.2023.0140464","DOIUrl":null,"url":null,"abstract":"Establishing a reasonable and efficient compulsory education balance index system is very important to boost the all-around of compulsory education development, and then realize the course recommendation for students with different attributes. Based on this, the research aimed at the problems in college English education and evaluation, aimed to establish a college English MOOC education and evaluation system based on the improved neural network recommendation algorithm. The research first constructed the college English MOOC education and evaluation data elements, and then established a genetic algorithm improved neural network algorithm (BP Neural Network Optimization Algorithm Based on Genetic Algorithm, GA-BP), and finally analyzed the effect of the assembled model. These results show that the fitness of the GA-BP model reaches the set expectation when the evolutionary algebra reaches 10 times, and its fitness is 0.6. The corresponding threshold and weight are obtained, and the threshold and weight are substituted into the model. After repeated iterative training, the model finally reached an error of 10-3 when it was trained 12 times, and the expected accuracy was achieved. The R value of each set hovered around 0.97, and the fitting degree was high, which showed that the GA-BP model proposed in the study had a better fitting degree. The difference between the expected value and the output value is mainly distributed in the [-0.08083, 0.06481] interval. To sum up, the GA-BP model proposed in the study has an excellent effect on college English education and evaluation. This evaluation model has a faster learning rate and a higher prediction accuracy and more stable performance. Keywords—Genetic algorithm; education quality assessment; BP neural network; college English MOOC","PeriodicalId":13824,"journal":{"name":"International Journal of Advanced Computer Science and Applications","volume":null,"pages":null},"PeriodicalIF":0.7000,"publicationDate":"2023-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Research on Recommendation Model of College English MOOC based on Hybrid Recommendation Algorithm\",\"authors\":\"Yifang Ding, J. Hao\",\"doi\":\"10.14569/ijacsa.2023.0140464\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Establishing a reasonable and efficient compulsory education balance index system is very important to boost the all-around of compulsory education development, and then realize the course recommendation for students with different attributes. Based on this, the research aimed at the problems in college English education and evaluation, aimed to establish a college English MOOC education and evaluation system based on the improved neural network recommendation algorithm. The research first constructed the college English MOOC education and evaluation data elements, and then established a genetic algorithm improved neural network algorithm (BP Neural Network Optimization Algorithm Based on Genetic Algorithm, GA-BP), and finally analyzed the effect of the assembled model. These results show that the fitness of the GA-BP model reaches the set expectation when the evolutionary algebra reaches 10 times, and its fitness is 0.6. The corresponding threshold and weight are obtained, and the threshold and weight are substituted into the model. After repeated iterative training, the model finally reached an error of 10-3 when it was trained 12 times, and the expected accuracy was achieved. The R value of each set hovered around 0.97, and the fitting degree was high, which showed that the GA-BP model proposed in the study had a better fitting degree. The difference between the expected value and the output value is mainly distributed in the [-0.08083, 0.06481] interval. To sum up, the GA-BP model proposed in the study has an excellent effect on college English education and evaluation. This evaluation model has a faster learning rate and a higher prediction accuracy and more stable performance. Keywords—Genetic algorithm; education quality assessment; BP neural network; college English MOOC\",\"PeriodicalId\":13824,\"journal\":{\"name\":\"International Journal of Advanced Computer Science and Applications\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.7000,\"publicationDate\":\"2023-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"International Journal of Advanced Computer Science and Applications\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.14569/ijacsa.2023.0140464\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"COMPUTER SCIENCE, THEORY & METHODS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Advanced Computer Science and Applications","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.14569/ijacsa.2023.0140464","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"COMPUTER SCIENCE, THEORY & METHODS","Score":null,"Total":0}
引用次数: 0

摘要

建立合理、高效的义务教育均衡指标体系,对促进义务教育全面发展,实现对不同属性学生的课程推荐具有重要意义。基于此,本研究针对大学英语教育与评价中存在的问题,旨在建立一个基于改进神经网络推荐算法的大学英语MOOC教育与评价系统。本研究首先构建了大学英语MOOC教育与评价数据元素,然后建立了一种遗传算法改进的神经网络算法(基于遗传算法的BP神经网络优化算法,GA-BP),最后对装配模型的效果进行了分析。结果表明,当进化代数达到10次时,GA-BP模型的适应度达到集合期望,其适应度为0.6。得到相应的阈值和权值,将阈值和权值代入模型。模型经过反复迭代训练,经过12次训练,最终误差达到10-3,达到预期精度。各集合的R值徘徊在0.97左右,拟合程度较高,说明本文提出的GA-BP模型具有较好的拟合程度。期望值与输出值的差值主要分布在[-0.08083,0.06481]区间内。综上所述,本研究提出的GA-BP模型对大学英语教育和评价具有良好的效果。该评价模型学习率更快,预测精度更高,性能更稳定。Keywords-Genetic算法;教育质量评估;BP神经网络;大学英语MOOC
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Research on Recommendation Model of College English MOOC based on Hybrid Recommendation Algorithm
Establishing a reasonable and efficient compulsory education balance index system is very important to boost the all-around of compulsory education development, and then realize the course recommendation for students with different attributes. Based on this, the research aimed at the problems in college English education and evaluation, aimed to establish a college English MOOC education and evaluation system based on the improved neural network recommendation algorithm. The research first constructed the college English MOOC education and evaluation data elements, and then established a genetic algorithm improved neural network algorithm (BP Neural Network Optimization Algorithm Based on Genetic Algorithm, GA-BP), and finally analyzed the effect of the assembled model. These results show that the fitness of the GA-BP model reaches the set expectation when the evolutionary algebra reaches 10 times, and its fitness is 0.6. The corresponding threshold and weight are obtained, and the threshold and weight are substituted into the model. After repeated iterative training, the model finally reached an error of 10-3 when it was trained 12 times, and the expected accuracy was achieved. The R value of each set hovered around 0.97, and the fitting degree was high, which showed that the GA-BP model proposed in the study had a better fitting degree. The difference between the expected value and the output value is mainly distributed in the [-0.08083, 0.06481] interval. To sum up, the GA-BP model proposed in the study has an excellent effect on college English education and evaluation. This evaluation model has a faster learning rate and a higher prediction accuracy and more stable performance. Keywords—Genetic algorithm; education quality assessment; BP neural network; college English MOOC
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
2.30
自引率
22.20%
发文量
519
期刊介绍: IJACSA is a scholarly computer science journal representing the best in research. Its mission is to provide an outlet for quality research to be publicised and published to a global audience. The journal aims to publish papers selected through rigorous double-blind peer review to ensure originality, timeliness, relevance, and readability. In sync with the Journal''s vision "to be a respected publication that publishes peer reviewed research articles, as well as review and survey papers contributed by International community of Authors", we have drawn reviewers and editors from Institutions and Universities across the globe. A double blind peer review process is conducted to ensure that we retain high standards. At IJACSA, we stand strong because we know that global challenges make way for new innovations, new ways and new talent. International Journal of Advanced Computer Science and Applications publishes carefully refereed research, review and survey papers which offer a significant contribution to the computer science literature, and which are of interest to a wide audience. Coverage extends to all main-stream branches of computer science and related applications
期刊最新文献
Comparison of K-Nearest Neighbor, Naive Bayes Classifier, Decision Tree, and Logistic Regression in Classification of Non-Performing Financing Simulation of fire exposure behavior to building structural elements using LISA FEA V.8. An Exploration into Hybrid Agile Development Approach A Study on Sentiment Analysis Techniques of Twitter Data Handwriting Recognition using Artificial Intelligence Neural Network and Image Processing
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1