一种新型无氮冷冻治疗装置的建模

F. Beaumont, F. Bogard, H. Hakim, S. Murer, B. Bouchet, G. Polidori
{"title":"一种新型无氮冷冻治疗装置的建模","authors":"F. Beaumont, F. Bogard, H. Hakim, S. Murer, B. Bouchet, G. Polidori","doi":"10.3390/dynamics1020013","DOIUrl":null,"url":null,"abstract":"Partial body cryotherapy cabins most often use liquid nitrogen as their cryogenic fluid, which raises safety concerns during operation. In this study, an innovative cryotherapy cabin design is presented, featuring an electric cooling system suitable for producing cold air at −30 °C. The geometry of the designed cryotherapy cabin is evaluated by a thermodynamic modeling which aims at optimizing the circulation of cold air flows inside the cabin. The numerical study is carried out in two successive phases, the first one being necessary to model the pre-cooling phase and to estimate the time required to reach an average temperature close to the set temperature of −30 °C. The second one aims at modeling a 3-min cryotherapy session by taking into account the thermal transfers between the human body and its environment. Results demonstrate the potential benefits of the cold air injection device which has been designed to optimize the thermal transfers and homogenize the temperatures within the therapeutic enclosure. The main innovation of this study is the ability to customize cryotherapy protocols by injecting cold air at different levels through targeting of specific body areas. Further calculations would be required to determine the precise impact of zone-targeted injection on skin cooling.","PeriodicalId":80276,"journal":{"name":"Dynamics (Pembroke, Ont.)","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2021-12-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":"{\"title\":\"Modeling of an Innovative Nitrogen-Free Cryotherapy Device\",\"authors\":\"F. Beaumont, F. Bogard, H. Hakim, S. Murer, B. Bouchet, G. Polidori\",\"doi\":\"10.3390/dynamics1020013\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Partial body cryotherapy cabins most often use liquid nitrogen as their cryogenic fluid, which raises safety concerns during operation. In this study, an innovative cryotherapy cabin design is presented, featuring an electric cooling system suitable for producing cold air at −30 °C. The geometry of the designed cryotherapy cabin is evaluated by a thermodynamic modeling which aims at optimizing the circulation of cold air flows inside the cabin. The numerical study is carried out in two successive phases, the first one being necessary to model the pre-cooling phase and to estimate the time required to reach an average temperature close to the set temperature of −30 °C. The second one aims at modeling a 3-min cryotherapy session by taking into account the thermal transfers between the human body and its environment. Results demonstrate the potential benefits of the cold air injection device which has been designed to optimize the thermal transfers and homogenize the temperatures within the therapeutic enclosure. The main innovation of this study is the ability to customize cryotherapy protocols by injecting cold air at different levels through targeting of specific body areas. Further calculations would be required to determine the precise impact of zone-targeted injection on skin cooling.\",\"PeriodicalId\":80276,\"journal\":{\"name\":\"Dynamics (Pembroke, Ont.)\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2021-12-16\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"2\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Dynamics (Pembroke, Ont.)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.3390/dynamics1020013\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Dynamics (Pembroke, Ont.)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.3390/dynamics1020013","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 2

摘要

部分身体冷冻治疗室通常使用液氮作为其低温流体,这引起了操作期间的安全问题。在这项研究中,提出了一种创新的冷冻治疗舱设计,其特点是一个适合在- 30°C产生冷空气的电动冷却系统。设计的冷冻治疗舱的几何形状是通过热力学模型来评估的,该模型旨在优化舱内冷空气流动的循环。数值研究分两个连续阶段进行,第一个阶段是模拟预冷阶段和估计达到接近- 30°C设定温度的平均温度所需的时间。第二个目标是通过考虑人体与环境之间的热传递来模拟3分钟的冷冻治疗过程。结果证明了冷空气注射装置的潜在好处,该装置被设计用于优化热传递和均匀化治疗外壳内的温度。这项研究的主要创新是能够通过针对特定身体区域注入不同水平的冷空气来定制冷冻治疗方案。需要进一步的计算来确定区域靶向注射对皮肤冷却的精确影响。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Modeling of an Innovative Nitrogen-Free Cryotherapy Device
Partial body cryotherapy cabins most often use liquid nitrogen as their cryogenic fluid, which raises safety concerns during operation. In this study, an innovative cryotherapy cabin design is presented, featuring an electric cooling system suitable for producing cold air at −30 °C. The geometry of the designed cryotherapy cabin is evaluated by a thermodynamic modeling which aims at optimizing the circulation of cold air flows inside the cabin. The numerical study is carried out in two successive phases, the first one being necessary to model the pre-cooling phase and to estimate the time required to reach an average temperature close to the set temperature of −30 °C. The second one aims at modeling a 3-min cryotherapy session by taking into account the thermal transfers between the human body and its environment. Results demonstrate the potential benefits of the cold air injection device which has been designed to optimize the thermal transfers and homogenize the temperatures within the therapeutic enclosure. The main innovation of this study is the ability to customize cryotherapy protocols by injecting cold air at different levels through targeting of specific body areas. Further calculations would be required to determine the precise impact of zone-targeted injection on skin cooling.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Exploring Transition from Stability to Chaos through Random Matrices Robust Global Trends during Pandemics: Analysing the Interplay of Biological and Social Processes Unveiling Dynamical Symmetries in 2D Chaotic Iterative Maps with Ordinal-Patterns-Based Complexity Quantifiers Thermal Hydraulics Simulation of a Water Spray System for a Cooling Fluid Catalytic Cracking (FCC) Regenerator Investigation of Jamming Phenomenon in a Direct Reduction Furnace Pellet Feed System Using the Discrete Element Method
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1